Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The brain and its adjacent blood vessels are separated by a protective barrier–it keeps viruses and other infections out but also limits entry of most medications, making tumors and other diseases of the brain particularly difficult to treat. But researchers in Taiwan have found a way to transport more anticancer therapeutics to the brain than previously possible through a novel combination of ultrasound and magnetic particles.

The new research shows how independently successful approaches can work in concert to be markedly more effective. Focused ultrasound waves, along with a solution of microbubbles injected into the bloodstream, had already been proven to briefly disturb the blood-brain barrier. Now, Kuo-Chen Wei, of Chang Gung University College of Medicine, has combined the ultrasound method with a technique that uses a magnetic field to attract drug-coated, magnetically charged nanoparticles to the precise spot where they’re most needed. The disrupted blood-brain barrier allows far more of these larger nanoparticles to enter the brain, and the magnetic field guides them directly to the tumors.

“Typical anticancer drugs can’t [accumulate in] the brain because of the blood-brain barrier,” Wei says. “If we could increase the local concentration of the drug and decrease the systemic side effects, that would be more practical for treatment.”

In rats, at least, he and his colleagues have done just that. Their results, published online today in Proceedings of the National Academy of Sciences and last month in the journal Neuro-Oncology, show that the ultrasound-magnetic targeting approach drives more therapeutic particles through the blood-brain barrier, increasing drug concentrations in the tumor region of the rat brain by 20-fold over the amount that passively diffused from the bloodstream in untreated rats.

“Right now, there’s a huge limitation on using drugs in the brain for disorders of all kinds–Alzheimer’s, epilepsy, Parkinson’s, anything you can think of,” says Nathan MacDannold, a radiologist who runs the Focused Ultrasound Laboratory at Brigham and Women’s Hospital in Boston. “Opening up a new way to get drugs into the brain could be a very big deal, if we can do it safely and translate it to humans.”

Even executing the technique in rats required a massive amount of effort and technological innovation. Wei and his group had to build their own drug-dosed magnetic nanoparticles, which they made by first coating the particles with iron oxide to make them magnetic and then adding a layer of the brain-tumor drug epirubicin. But they also had to build a platform that combined both focused ultrasound directed only toward the area of the tumor, and a magnetic field immediately over the same spot. (Opening up the blood-brain barrier anywhere else in the brain could allow toxic cancer-killing drugs to kill healthy cells.)

0 comments about this story. Start the discussion »

Credit: Chang Gung Memorial Hospital

Tagged: Biomedicine, drug delivery, ultrasound, tumors, magnetic nanoparticles

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me