Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

“They’ve clearly shown that E. coli can make these large proteins, and engineered them to have the resources to do it,” says Randy Lewis, professor of molecular biology at the University of Wyoming. Lewis predicts that it will be possible to use a bacterial system to produce kilogram quantities of artificial spider silk within a few years.

Kaplan says that’s his plan. “We’d like to turn it into a continuous production process,” he says.

Kaplan says what’s needed now are more energy-efficient methods for making the proteins into fibers. Using spinning methods similar to those used to make polymer fibers such as polyester, his group has created fibers from the team’s proteins with properties comparable to natural dragline silk in terms of strength, elasticity, and toughness. However, because spider-silk proteins are finicky and insoluble in water, spinning them into fibers requires high-temperature processing and harsh solvents.

The fibers “take a huge amount of energy to put together,” says Kaplan. Materials scientists would like to make silk fibers the way spiders do: at ambient temperatures, with no harsh solvents.

A novel approach to the problem is being pursued by Luke Lee, director of the molecular nanotechnology center at the University of California, Berkeley. He is designing spinning systems that incorporate microfluidic channels designed to provide the salt- and solvent- gradients found in spider glands. A company called Refactored Materials, founded by students of Lee’s and Voigt’s, is also working on the spinning problem.

12 comments. Share your thoughts »

Credit: Proceedings of the National Academy of Sciences

Tagged: Biomedicine, Materials, material, silk, biomimetics, construction materials, spider silk, biomimetic materials

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me