Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers have been trying to make artificial spider silk–a lightweight, tougher-than-steel material that could have countless industrial applications–for decades. In an important step toward that goal, researchers at Tufts University have created genetically engineered microbes that produce more of the proteins needed to make spider silk than ever before.

Dragline silk–the type spiders use for the rims and spokes of their webs–is tougher and far lighter than steel. Engineered bacteria can produce the proteins needed to synthesize this silk, which is spun together to make fibers. However, previous efforts to make spider silk using bacteria have been hamstrung for several reasons. First, researchers have had an incomplete picture of the dragline silk gene sequence. And second, they’ve had limited success in modifying the bacteria to produce enough of the proteins.

David Kaplan, chair of the biomedical engineering department at Tufts University, has pioneered the application of silkworm silk in medical devices, biodegradable electronics, optical devices, and adhesives. He believes that spider silk, which is stronger than the silkworm variety, could open up new applications, but says, “It hasn’t been explored as much because we haven’t had enough material.” Spiders are aggressive and territorial and thus can’t be farmed like silkworms.

Bioengineers have had only modest success in getting microbes to make spider-silk proteins. Chemical giant DuPont tried unsuccessfully to develop a bacteria-produced silk product in the 1990s. Part of the problem is that spider silk is made from a very large protein with a highly repetitive genetic sequence, making it hard to decode, says Christopher Voigt, professor of pharmaceutical chemistry at the University of California, San Francisco.

Last year, researchers using new sequencing technologies produced the first complete genetic sequence for spider silk. Before that, researchers were forced to use truncated silk genes, and fibers made using these genes were not as strong and tough as natural silk.

Even with the full dragline silk gene sequence, producing artificial silk is a challenge. Making enough of the protein requires a larger amount of starting material than the bacteria naturally contain. Working with researchers at the Korea Advanced Institute of Science and Technology in Daejeon and Seoul National University, Kaplan added the full silk gene to E. coli and then altered the bacteria’s protein-making pathway so that it makes sufficient quantities of the amino acids needed to enable silk production. Previously, engineered bacteria have only been able to produce tens of milligrams of the protein per liter. Kaplan’s E. coli yield one to two grams per liter.

12 comments. Share your thoughts »

Credit: Proceedings of the National Academy of Sciences

Tagged: Biomedicine, Materials, material, silk, biomimetics, construction materials, spider silk, biomimetic materials

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me