Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

While reprogrammed stem cells–those derived from fully differentiated adult cells–can be transformed into any type of tissue, scientists have now discovered that they preserve a memory of where they came from. That memory appears to influence the cells’ development; reprogrammed stem cells are more easily converted back to their original identity, according to a study released online today in Nature. The findings could affect research into the two main uses for reprogrammed stem cells; growing efforts to study disease in cells derived from patients with those diseases, and the development of replacement cell therapies.

A few years ago, researchers developed a way to reprogram adult cells into stem cells using a simple combination of genetic or chemical factors, no embryo required. Like embryonic stem cells, these induced pluripotent stem (iPS) cells can both reproduce themselves and differentiate into just about any type of tissue in the body. The technology spread rapidly around the globe, providing a way to study stem cells and their potential therapeutic benefits without the technical and ethical hurdles of using cells derived from embryos. But three years later, complications continue to crop up.

While iPS cells have passed all the traditional tests of so-called pluripotency–the ability to differentiate into any type of tissue–and appear genetically identical to embryonic stem cells, they do have limitations. George Daley and his colleagues have found, by studying stem cells from mice, that cells derived from blood are better able to differentiate back into blood cells than into bone; those derived from bone make poor blood cells and even poorer neurons.

Daley’s team also compared mouse iPS cells to those that had undergone nuclear transfer, the technique used to clone Dolly the sheep. The two methods trigger different mechanisms to push a cell back to a stem-cell state, and the chemical methods of iPS cell reprogramming appear to be less thorough. The iPS cells maintain chemical modifications on their DNA indicative of their previous identity, while nuclear transfer wipes the slate clean. (It wasn’t possible to do similar experiments with human cells, because no one has yet cloned human cells.)

The findings create a snag for the use of iPS cells for basic disease research. Many scientists have been collecting skin samples from patients with various diseases, reprogramming them back to iPS cells, and then prompting them to differentiate into tissues affected by the disease. This allows them to examine how the disease unfolds at a molecular level. But if the disease is a neurologic one, such as Parkinson’s, or anything not related to skin tissue, the variation that occurs due to the originating tissue could mask effects of the disease.

4 comments. Share your thoughts »

Credit: Kitai Kim, Children's Hospital

Tagged: Biomedicine, stem cells, disease, iPS cells, reprogramming cells

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me