Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Yager’s team designed a device in which they varied the lengths of paper that led from three reagent sources to a common reaction site, providing a way to control the timing of reactions.

The team demonstrated the amplification of a color indicator linked to a molecule associated with a disease. This allows the disease to be detected visually even if the tell-tale molecule is present only in very low concentrations. This is a crucial part of several clinical tests, but had not yet been carried out on paper because of its complexity–needing different reagents at different times. The team’s results were published this month in Sensors and Actuators and Microfluidics and Nanofluidics.

The new devices will be entirely self-sufficient and can be operated by without training. “What we’re doing is throwing away the pumps, throwing away the hardware, and keeping the full complexity of the microfluidics we’ve worked on in the last 15 years,” says Yager.

Bernhard Weigl, the director at the Center for Point-of-Care Diagnostics for Global Health, says that paper tests like the one Yager’s team is developing could be used to detect a range of diseases, with just one sample, “as samples can be guided to different reagent sites from a single distribution point,” he says. Weigl is collaborating with Yager’s team to develop and test the device.

Now that the team has shown that the amplification step is possible, they are working on ways to optimize and package the technology for distribution. The end result is expected to be a paper-based device, laminated in plastic for protection, with a lens to make the results visible.

0 comments about this story. Start the discussion »

Credit: Elain Fu, University of Washington

Tagged: Biomedicine, microfluidics, developing countries, paper diagnostics

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »