Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Paper-based diagnostic tests represent an exciting opportunity for improving medical testing in poor countries. They are cheap to produce and don’t require complicated instruments to carry out a test or read the result, so they can be implemented in areas with few resources and little infrastructure. But paper diagnostic tests have thus far been limited to fairly simple reactions. Researchers at University of Washington in Seattle have now taken an important step toward enabling more complex chemical reactions on paper.

Paul Yager and collaborators have developed a way to control the timing of delivery of chemicals within a paper-based device, and demonstrated how this can be used to amplify the signal of a test antibody. The amplification step is an important part of routine technique called an enzyme-linked immonsorbent assay (ELISA) that is currently carried out on large, expensive instrumentation. “[ELISA is] the gold standard for sensitivity– the gold standard for many diagnostics where you’re detecting proteins, even small antibodies. It can be used to diagnose multiple diseases,” says Barry Lutz, a coauthor on the studies, and Research Assistant Professor at the University of Washington.

Existing clinical tests, involving trained laboratory technicians and large, expensive equipment are out of reach of clinics in remote areas of the developing world. A microfluidic device capable of controlling the movement of tiny amounts of fluid could reduce the amount of costly reagents and enzymes for the tests, and using paper as a material reduces the cost even further.

Pregnancy tests sold in drugstores are a simple example of a paper-based diagnostics. Yager and others are now creating much more complex paper-based tests. Other scientists have had some success developing a paper test of liver function. But most clinical tests are more complex, requiring multiple steps to isolate, label, and multiply a molecule of interest.

Yager’s team aims to transfer the microfluidics technology it has developed over the last two decades to a paper device. With traditional microfluidics, reagents flow through channels on a plastic chip to elicit controlled chemical reactions. These devices require tiny pumps and other mechanisms to manipulate the various chemicals. Paper-based microfluidic devices use the inherent flow properties of channels within paper, and so they do not need pumps. But this makes controlling the release of fluids in the device difficult.

0 comments about this story. Start the discussion »

Credit: Elain Fu, University of Washington

Tagged: Biomedicine, microfluidics, developing countries, paper diagnostics

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me