Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

By analyzing just 150 spots on the genome, researchers can predict who will live to extreme old age with almost 80 percent accuracy, according to a study published online today in the journal Science. Researchers from Boston University employed a widely used genetic-screening technology to find genetic variations that occur more frequently in centenarians–people age 100 and older.

In addition to providing a potential way to predict who might live into their 100s, the findings suggest that genetics play a major role in surviving to extreme old age. And the team hopes that identifying the genes and corresponding molecular mechanisms that promote longevity will give new insight into how to prevent or delay age-related diseases, such as heart disease, Alzheimer’s, and cancer.

“Centenarians are a model of aging well,” says Thomas Perls, director of the New England Centenarian Study at Boston Medical Center and an author of the study. Previous findings from the project, the largest study of centenarians in the world, show that 90 percent of them are free of disability to an average age of 93. “They seem to compress disability to the end of their lives,” says Perls. “I am very hopeful that understanding how centenarians do that will lead to new strategies for therapies.”

Perhaps most surprisingly, preliminary analysis showed that centenarians had just as many genetic variants linked to diseases as did people in the control group. “That suggests that what makes people live long lives is not lack of genetic disposition to disease but longevity-promoting genes,” says Paola Sebastiani, a biostatistician at Boston University and coauthor of the study. “If longevity variants cancel out disease-associated variants, it could open new ways of treating age-related diseases.” The findings also call into question genetic tests now available to consumers that calculate an individual’s risk for a specific disease, such as type 2 diabetes or cancer, based on common genetic variants. “The finding needs to be replicated, but if it’s true, trying to predict risk of disease out of context may be inaccurate,” says Sebastiani. “You need the overall genetic background to make an accurate prediction.”

The researchers used microarrays, chips dotted with specific sequences of DNA, to screen centenarians in the study for about 30,000 common genetic variations. They identified about 30 variants found at significantly higher rates in two groups of centenarians compared to a control group. Each individual variant had little impact, however, so the researchers developed an algorithm to combine the effects of multiple variants acting together. Using a list of the variants that differed most between the control groups and centenarians, they found that the predictive value topped out at about 150 variants; in an independent set of 250 centenarians and 350 controls, the model could accurately predict the centenarians 77 percent of the time. The remaining 23 percent may possess as-yet unidentified genetic factors or be the result of environmental factors not accounted for by the model.

Most centenarians possess a subset of the 150 variants, and the researchers found that their genetic profiles cluster into 19 different genetic signatures. The longest survivors, who live a median age of 108, have the highest number of longevity variants, says Sebastiani. “And some of the signatures correlate with the latest age of onset of age-related diseases, such as dementia or cardiovascular disease.”

“To have about 150 genes involved in exceptional longevity is really very few,” says Nir Barzilai, director of the Institute for Aging Research at Albert Einstein College of Medicine, in New York, who was not involved in the study. “I think it’s within our power to understand their mechanisms and to start to develop drugs against aging.”

7 comments. Share your thoughts »

Tagged: Biomedicine, genetics, aging, Alzheimer's, longevity

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me