Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A lithium-ion battery with a positive electrode made of carbon nanotubes delivers 10 times more power than a conventional battery and can store five times more energy than a conventional ultracapacitor. The nanotube battery technology, developed by researchers at MIT and licensed to an undisclosed battery company, could lead to batteries that improve heavy-duty hybrid vehicles and allow faster recharging for electronic gadgets, including smartphones.

Researchers have been trying to make electrodes for lithium-ion batteries from carbon nanotubes because their high surface area and high conductivity promise to improve both energy and power density relative to conventional forms of carbon. But working with the material has proved challenging–most methods for assembling carbon nanotubes require a binding agent that brings down the conductivity of the electrode, and lead to the formation of clumps of the material, reducing the surface area. The electrodes made by the MIT group, however, have a very high surface area for storing and reacting with lithium. This high surface area is critical both to the high storage capacity of the electrodes, as well as their high power: because lithium is stored on the surface, it can move in and out of the electrode rapidly, enabling faster charging and discharging of the battery.

The key to the performance of the MIT electrodes is an assembly process that creates dense, interconnected, yet porous carbon-nanotube films, without the need for any fillers. The group, led by chemical engineering professor Paula Hammond and mechanical engineering professor Yang Shao-Horn, create water solutions of carbon nanotubes treated so that one group is positively charged and the other is negatively charged. They then alternately dip a substrate, such as a glass slide, in the two solutions, and the nanotubes, attracted by differences in their charge, cling to one another very strongly in uniform, thin layers. The researchers had previously demonstrated that when heated and removed from the substrate, these dense yet porous films could store a lot of charge and release it quickly–acting like an electrode in an ultracapacitor.

Gain the insight you need on energy at EmTech MIT.

Register today

8 comments. Share your thoughts »

Credit: Nature Nanotechnology/NPG

Tagged: Energy, Materials, energy, batteries, carbon nanotubes, energy storage, electrode

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me