Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Electrically stimulating the vagus nerve, which connects the brain and the visceral organs, could help temper the phantom sounds that plague tinnitus sufferers. Researchers from Microtransponder, a Dallas-based startup developing wireless stimulation technology, reported at a neurotechnology conference in Boston this week that the approach works in animals with auditory damage that mimics the disorder. The company is adapting its neurostimulation technology, currently being developed for chronic pain, to target the vagus nerve.

Tinnitus, the false perception of ringing or other sounds in the ear, affects millions of people worldwide. Most often associated with hearing loss, it has become an especially common problem in soldiers exposed to loud blasts. The severity of the disorder varies widely, from relatively benign to debilitating, and the few existing treatments tend to mask the intrusive sound rather than eliminate it.

While it’s unclear exactly what causes tinnitus, research suggests it arises from the brain’s attempt to compensate for hearing loss. Damage to the inner ear, which translates sound vibrations into neural signals for the brain, results in less input to the brain’s auditory pathways. The brain appears to try to make up for this loss of input by increasing activity, which may in turn result in phantom sounds.

Michael Kilgard, a neuroscientist at the University of Texas, aims to reverse this maladaptive reorganization using a combination of electrical stimulation and sound. Kilgard has previously shown that stimulating part of the brain called the nucleus basalis while playing a particular tone triggers the auditory cortex to reorganize to become hyper-responsive to that tone. To treat tinnitus, the idea is to stimulate this area while playing all sound frequencies except the one corresponding to a patient’s phantom sound, thus signaling to the brain to become more responsive to all these other frequencies. If successful, this would rebalance the auditory cortex.

2 comments. Share your thoughts »

Tagged: Biomedicine, implant, vagus nerve, hearing loss

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me