Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

“A lot of other low-cost approaches don’t produce high-performance devices, but in this case great performance is maintained,” says Yi Cui, professor of materials science and engineering at Stanford University. “And in the end it’s flexible, something you can’t get with conventional processing,” he adds. Rogers developed a similar method for making large area, flexible silicon electronics a few years ago, and adapted the chemistry to work with gallium arsenide. Cui says that the latest work shows that the method should work with any crystalline semiconducting materials, as long as the right chemistry can be found so that the etching step affects only the sacrificial layer.

The multilayer technique “is quite attractive since it makes the process highly scalable and potentially cost-effective, making the potential use of gallium arsenide for large-scale photovoltaics a reality,” says Ali Javey, professor of electrical engineering and computer science at the University of California, Berkeley.

Semprius is using the process to make multilayer, microscale concentrated solar modules with efficiencies as high as 37 percent. These modules should produce power at a cost of about $2 to $3 per watt after installation. Joe Carr, the company’s CEO, says Semprius’s pilot plant will be operational by the end of this year, at which time it will begin making its first products. The company has funding from the U.S. Department of Energy and a development agreement with Siemens.

Rogers says he pursued solar power as an initial application because photovoltaic sales are so cost-sensitive. His research group will continue to develop other devices, and it also plans to adapt the technique to other materials. He also hopes to adapt the method to gallium nitride, which works well in the visible spectrum and can be used to make solid-state lighting.

0 comments about this story. Start the discussion »

Credit: John Rogers

Tagged: Computing, Materials, materials, startups, flexible electronics, solar energy, power, semiconductors

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me