Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Compared to silicon, semiconductors like gallium arsenide can be made into solar cells that convert more sunlight into electricity and transistors that are faster than their silicon counterparts. But devices made from these materials are expensive.

Now a new method for making large-area devices from gallium arsenide promises to bring down costs by eliminating manufacturing steps and wasting less materials. Researchers have used the method to make high-performance image sensors, transistors, and solar cells. Semprius, a Durham, NC, company, is using it to make solar modules that should be on the market by the end of the year.

Gallium arsenide solar cells convert twice as much of the energy in sunlight into electricity compared to silicon cells, says John Rogers, professor of materials science and engineering at the University of Illinois at Urbana-Champaign, who led the research. Gallium arsenide is also being eyed by microchip manufacturers such as Intel as a potential replacement for silicon.

The problem with gallium arsenide, however, is its price tag. To make a gallium arsenide solar panel today, manufacturers grow a semiconductor crystal on an expensive template in a high-vacuum, high-temperature chamber. The gallium arsenide is then diced into thin pieces, assembled, and bonded. This process destroys the underlying template, which is necessary to create a high-quality crystal. And making only a single layer of gallium arsenide at a time is inefficient–it takes more time to load and unload the vacuum chamber than it does to grow the crystal.

To address the problem, Rogers developed a method for growing multiple layers of devices at one time, and a way to release them from the substrate without destroying it. “Once the substrate is in the chamber at the right temperature, we grow a multilayer stack,” explains Rogers. The stack alternates a device layer with a sacrificial layer. After all the layers are put down, the stack is etched in a chemical bath that eats away at the sacrificial layer, made of aluminum arsenide, releasing thin rectangular films of gallium arsenide. As the gallium arsenide films are released, they’re picked up and placed on a substrate.

These films, which are thin and flexible, can be placed on flexible substrates such as plastic, and then packaged to create high-performance solar cells, image sensors, and transistor arrays. The method and the devices are described this week in the journal Nature.

0 comments about this story. Start the discussion »

Credit: John Rogers

Tagged: Computing, Materials, materials, startups, flexible electronics, solar energy, power, semiconductors

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me