Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A small digital microscope that costs just a few dollars can plug into a cell phone and perform basic medical diagnostics that would ordinarily require expensive lab equipment. The microscope, which uses no lenses, saves on cost and weight by using algorithms to get more information from images. The device can generate blood counts and identify disease cells and bacteria from simple images sent through a USB cord to a cell phone that uses software to processes the data. The latest version of the microscope integrates an interference-based contrast method to provide better images in addition to diagnostic information.

The researchers developing the device hope it will bring better medical diagnostics to parts of the world where cell phones are prevalent but access to expensive clinical diagnostic equipment is not. Even basic cell phones now have significant processing power that can be used to analyze images of blood smears and other samples on the spot, enabling a patient to get on the right tuberculosis drug faster and enabling health-care providers to identify drug-resistant strains faster. What sets the new microscope apart from other efforts at integrating optical diagnostics with cell phones is the effort to make it as simple and cheap as possible. That means eliminating expensive lenses, and using software to get medical information from blurry images.

The device was made by researchers led by Aydogan Ozcan, professor of electrical and biomedical engineering at UCLA. It has only two key hardware components: a light-emitting diode to illuminate the sample and an light-sensing chip. These components each cost about 30 to 40 cents. Slides smeared with samples are loaded into the microscope through a small drawer that sits between the LED and the light sensor. A USB port carries power and data between the scope and a cell phone. The tiny microscope measures about six centimeters high and four centimeters on each side; it weighs just 46 grams.

Since the microscope has no lenses, it does not magnify the images. Yet it is able to gain resolution just under two micrometers, and makes images that are about as clear as those made by a conventional 40X microscope. This is made possible by image-processing software. “We compensate for everything in the digital regime,” says Ozcan. As light from the LED passes through a given type of cell, the light bends or diffracts in a characteristic way depending on the cell’s size, shape, and refractive index. Data picked up by the light-sensing chip is carried to a cell phone for analysis. Ozcan has previously demonstrated running software on the phone that consults a library of diffraction signatures characteristic of particular cell types and bacteria to identify and count the cells in the sample.

12 comments. Share your thoughts »

Credit: Aydogan Ozcan

Tagged: Computing, Biomedicine, diagnostics, optics, medical imaging, microscopy, image processing, telemedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me