Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Meanwhile, BP and its industry partners are hatching an array of alternate efforts that have never been tested in ultra-deepwater conditions (1,500 meters or more of water depth). These include placing a funnel-like structure over the leaks and sucking it to a ship on the surface, pumping chemical dispersants to the leak to break up the oil and keep it from reaching the surface, and crimping the broken riser pipe coming up from the wellhead.

Allen says that all of these ideas have promise, but the latter is the more risky since it could interfere with existing crimps in the pipe and actually increase the flow of oil several fold. The flow is very roughly estimated at 5,000 barrels per day currently.

Why weren’t these alternative methods validated prior to this accident? “It’s something I’m sure we’ll look at,” says Radford.

While the Deepwater Horizon leaks’ depth is unprecedented, it was not unanticipated. A report by engineering consulting firm URS Corp. in 2002 concluded that “Technologies used in shallow waters are no longer adequate for water depths over 1,000 meters. As a result, the environmental consequences of some of the newer deepwater technologies are not well understood.”

In 2005 petroleum engineering researchers from Texas A&M University suggested that drilling in the “dangerous and unknown” ultra-deep environment required new blowout control measures: “While drilling as a whole may be advancing to keep up with these environments, some parts lag behind. An area that has seen this stagnation and resulting call for change has been blowout control.”

An analysis of incidents in the Gulf of Mexico by the Texas A&M researchers showed that offshore blowouts had continued at “a fairly stable rate” since 1960 despite the use of BOPs. Regulators require inspection of BOPs every 14 days. BP says it inspected the Deepwater Horizon’s 10 days before last month’s blowout.

Bommer says the most likely technology change that will come out of Obama’s mandated review is the addition of a second, independent sea-floor BOP.

That is unlikely to satisfy some critics, who are pushing the Obama administration to withdraw plans to extend offshore oil and gas drilling beyond the Gulf Coast. “The bottom line in our view is that there is no safe way to drill that is guaranteed, and that the safety and cleanup technology has not kept pace with the drilling technology. This is why we are calling for a moratorium on all new drilling, including for exploration,” says Jacqueline Savitz, a senior scientist with Oceana, an international ocean protection advocacy group.

47 comments. Share your thoughts »

Credit: U.S. Coast Guard

Tagged: Energy, oil, BP, oil spills, safety features

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me