Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Nano-patterning: At the heart of the new tool is a tiny silicon tip. It is able to carve out features as small as 15 nanometers through heating and the application of nanonewtons of pressure.

This ability to create 3-D structures is intriguing, says Zahid Durrani at Imperial College London. “It’s completely novel,” he says. “I’ve never seen anything like this before.” However, as with other probe technologies, extending the process to large numbers of tips operating in parallel is likely to prove challenging, says Durrani.

Karl Berggren, co-director of MIT’s Nanostructures Laboratory, says IBM’s instrument is an incredibly “clever and elegant” solution. “They’ve done something quite creative here,” he says. Researchers have long struggled with thermal methods of probe lithography, but it was slow and resolutions were mediocre, says Berggren. “IBM has changed that,” he says. “So making sub-20-nanometer-scale lithography available to labs that need it at reasonable cost may be the long-term legacy of this work. And it is a very important one.”

In contrast, e-beam lithography requires several steps and tends to be very expensive, with systems costing up to $5 million, says Berggren. The IBM instrument is small enough to sit on a desktop and should cost around $100,000.

It is also relatively fast, says Duerig. Because the tip can write each “pixel” in microseconds, it can be scanned across the substrate very rapidly. The world map, for example, which consists of 500,000 pixels, took just two minutes to draw.

A crucial step in developing this technique involved finding suitable organic substrates. To this end, colleagues at IBM’s Research-Almaden, in California, were brought in to help find hard organic substrates that could be used as so-called “resists,” a sort of mask used in chip fabrication.

The challenge was to find materials that were tough enough to be used as substrates, but which could be thermally decomposed easily, evaporating into nonreactive chunks when brought into contact with the hot tip. In the case of the world map, a polymer called polyphthalaldehyde was found suitable, and for the Matterhorn, the IBM scientists used a form of molecular glass.

Hear more from IBM at EmTech 2014.

Register today

3 comments. Share your thoughts »

Credits: Advanced Materials, IBM

Tagged: Computing, nanotechnology, IBM

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »