Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

IBM researchers have invented a low-cost and relatively simple fabrication tool capable of reliably creating features as small as 15 nanometers. To show off the tool, the researchers at IBM’s Zurich lab made a three-dimensional map of the Earth so small that 1,000 of them would fit onto a single grain of salt.

Existing nano-fabrication techniques like electron beam lithography have difficulty making features much smaller than 30 nanometers and are expensive and complex instruments. In contrast, the IBM researchers say their new fabrication tool sits on a tabletop at one-fifth to one-tenth the cost.

The new instrument is a descendant of the scanning tunneling microscope (STM) invented by IBM Zurich scientists in the early 1980s. That microscope made it possible, for the first time, to image and manipulate atoms. The new instrument uses an extremely small silicon tip that is rapidly scanned across the surface of the substrate. The tip is cantilevered like those used in atomic force microscopy (or AFM: an offshoot of STM that was invented in 1986), enabling it to apply nanonewtons of force to the surface. But unlike AFM, the tip is heated.

Where it touches the substrate, the thermal energy at the tip is sufficient to break weak bonds within the material. “We provide enough thermal energy so these molecules become mobile, crawl along the hot tip and evaporate,” says Urs Duerig, a scientist IBM’s Zurich Research Laboratory, in Switzerland. Together with colleague Armin Knoll and others, Duerig developed the new technique. What’s remarkable about this, he says, is that it removes exactly the same amount of the material each time.

The advantage of the new instrument, compared to techniques such as e-beam lithography that involve removing material by bombarding it with particles, is that the effect is more localized. Although e-beam lithography can create features as small 15 nanometers, at resolutions below 30 nanometers, stray electrons tend to cause interactions with parts of the material neighboring the target area.

One advantage of the new technique is that it can bore down into the substrate at different depths, again at very high resolutions. This was demonstrated by etching into a molecular glass substrate a 25-nanometer-high topographical representation of the Swiss mountain, the Matterhorn, with a scale of 1:5 billion. The 3-D image was made by selectively removing material in 120 different layers.

3 comments. Share your thoughts »

Credits: Advanced Materials, IBM

Tagged: Computing, nanotechnology, IBM

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me