Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

“It is very important to detect proteins without the use of fluorescent labeling,” says Luke Lee, director of the Biomolecular Nanotechnology Center at University of California, Berkeley, who was not directly involved in the research. Fluorescent labeling is complex and prone to bleaching or fading, which can throw off the signal.

The research has established the technology’s potential to detect low concentrations of proteins in a mere attoliter of blood. While such sensitivity is not critical for identifying a risk of blood clotting, it is important in monitoring for other diseases. Scientists could record measurements in different cellular organelles–separate compartments within the cell–rather than averaged over the whole cell. “It is remarkable accomplishment that they are able to detect the protein at such low concentrations,” says Lee.

“You could actually locate in a cell what is happening at a particular time point in a viral infection,” says Michael Ochsenkühn a chemist at University of Edinburgh and one of the researchers on the project. Currently the Edinburgh scientists are using the same technology to look at the biomolecular interactions involved in autoimmune disease. They are also investigating host-pathogen interactions for viral research.

Campbell’s team had previously shown that the gold nanoshells appear safe when injected into cells–they don’t cause cell death or impede new cell growth. As gold is unreactive, the body will not reject the implant, say the researchers. But the technology still has a number of hurdles to overcome before it can be used for medical applications.

“The limit of such research is, it needs an aptamer that catches a specific protein,” says Jaebum Choo an analytical chemist at Hanyang University in Korea, who was not involved in the study. “While the thrombin aptamers are well known, few known aptamers for other proteins are known at this stage. For the development of this technology, biologists and biochemists need to find the various different kinds of aptamer for capturing valuable proteins.”

2 comments. Share your thoughts »

Credit: University of Edinburgh

Tagged: Biomedicine, diagnostics, nanoparticles, lasers, protein, blood clot

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me