Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

As blossoming spring trees spew pollen, many allergy sufferers would be grateful for a more effective way to alleviate their itchy misery. How about swallowing a batch of pig whipworm eggs, or deliberately infecting oneself with the fecal-dwelling hookworm? Yucky as these options sound, mounting evidence in both humans and animals suggests that infection with these parasitic worms seems to protect against a number of inflammatory diseases, including asthma and allergy, multiple sclerosis, Crohn’s disease, and type 1 diabetes.

Because parasitic infection is unappealing to even the most severe allergy sufferer, some scientists hope to decipher how these organisms control the immune systems of their human hosts and to develop new therapies that replicate the parasites’ beneficial effect. “We can treat people with worms, or can we figure out how worms protect, and discover a new way to treat allergies by mimicking what worms do,” says Ed Mitre, a physician and scientist at the Uniformed Services University in Bethesda, MD. “My general feeling is that we should be trying to induce the types of immune responses we see in chronic worm infections.”

A number of epidemiological studies have shown that people infected with parasitic worms suffer less from allergies and other immune diseases, and research in animal models designed to mimic these diseases supports these findings. The rise in allergies and other ailments in rich countries over the last few decades has been matched by a decrease in parasitic worm infection, among other factors. “When you have organisms that have lived together for hundreds of thousands of years, they become mutualistic rather than combative,” says Joel Weinstock, a physician and scientist at Tufts University, in Boston. “Possibly we became dependent on helminths [parasitic worms] and made ourselves vulnerable to immunologic diseases.”

The mechanism behind the organisms’ protective power is not yet clear. Infection with parasitic worms induces an allergic response called TH2, the same one triggered by allergens, raising levels of an antibody called immunoglobulin E (IgE). Binding of thatantibody to specific immune cells in the blood signals the cells to dump their contents, including histamines, into the bloodstream, triggering the typical allergy symptoms. However, “people with parasite infections have lots of IgE in their serum and lots of the cells that cause allergies, but they don’t have allergies,” says Lisa Ganley-Leal, an immunologist at Boston University.

Ganley-Leal thinks she has discovered one of the mechanisms behind this apparent paradox. Studying the parasitic flatworm schistosoma in test tubes, her team found that the worms produce an enzyme that chops up free versions of the IgE receptor in a unique way. These fragments then bind to the IgE antibody, preventing it from binding to receptors on the surface of immune cells and thus stopping the cells from releasing troublesome histamines.

2 comments. Share your thoughts »

Credit: David Williams, Illinois State University

Tagged: Biomedicine, drug development, asthma, inflammation

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me