Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Radius Health’s x-ray sources work through pyroelectricity–the ability of some materials to produce electrical fields when they’re either heated or cooled–and uses an approach developed at the University of California, Los Angeles for controlling the emission of electrons by pyroelectric crystals.

Chemical etching is used to carve wafers of pyroelectric crystals into small tiles, which are then arrayed on top of a resistive heater. “We pattern the surface of the crystal with fine points that allow electrons to leave only at those points,” says Gil Travish, a researcher in the university’s particle beam physics laboratory and one of the company’s cofounders. This ensures a steady beam of electrons that can then be used to generate aligned x-rays suitable for imaging. The crystals used include lithium niobate and lithium tantalate crystals, which are found in telecommunications devices and sensors. “We don’t need unusual materials,” says Travish.

The tiled wafers are topped with a metal foil that emits x-rays when bombarded by electrons from the crystal beneath. A conventional x-ray tube produces a cone-shaped beam of radiation with a hot spot in the middle, which means radiologists must place patients farther away from the x-ray source to get an image of a larger area–to make up for the loss in intensity over distance, the energy of the radiation has to be increased. The new system produces uniform, parallel rays that should have advantages when imaging large areas, says Travish.

Another company, Xintek, is developing a novel x-ray source that uses bundles of carbon nanotubes. The company is farther along in development, having brought its technology to clinical testing with Siemens. But Enzmann says the advantage of Radius Health’s technology is that the panels can be readily fabricated over large areas using methods already employed in the microchip industry.

2 comments. Share your thoughts »

Credit: Gil Travish

Tagged: Biomedicine, Business, materials, medical imaging, x-ray

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me