Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A startup company is developing a flat-panel source of x-rays that could help make the imaging technique portable. The company’s panels are made using techniques commonplace in the semiconductor industry and would be combined with flat-panel image sensors to make a briefcase-sized x-ray machine powered by a laptop battery. Such a system might be used in the field by the military or instead of bulky bedside systems used in hospital intensive-care units. Early research also suggests it might expose patients to less radiation.

The company behind the x-ray source, Radius Health, was spun out of the University of California, Los Angeles last year. It is developing a commercial version of a flat-panel x-ray source developed by physicists at the university. The company will make its first complete x-ray imager in three to four months and says it will have a full-scale prototype in a year.

The x-ray machines used in hospitals today employ a high-energy source of the radiation. A tungsten filament at one end of a long vacuum tube emits electrons when heated and those accelerate down the tube until they hit a metal electrode, causing it to produce x-rays.

Many groups are working to develop more compact and robust x-ray sources, says Dieter Enzmann, chair of radiological sciences at the University of California, Los Angeles Health System. Enzmann was not involved with the development of the new x-ray source but serves on Radius Health’s advisory board.

A key advantage of Radius Health’s system is that it uses an array of emitters, rather than a single source. “There is some potential to reduce the x-ray dose if you can control hundreds or thousands of x-ray sources independently,” says Enzmann. This lower dose would be especially attractive for pediatric imaging, Enzmann says, adding “if you have a portable, thin design that generates good images, it could be used both in the field and within the hospital.”

2 comments. Share your thoughts »

Credit: Gil Travish

Tagged: Biomedicine, Business, materials, medical imaging, x-ray

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me