Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Newer bispecific antibodies also target HER2, but in a different way. Merrimack Pharmaceuticals, a startup in Cambridge, MA, has developed a candidate bispecific antibody called MM-111. One arm binds to the HER2 receptor, and the other binds to a related receptor called HERB3. Binding both prevents the two receptors from coming together and activating a signaling pathway important for cell survival. The drug is now in early-stage clinical trials for cancers that overexpress HER2.

One of the problems with herceptin is that tumors can evolve resistance to the drug, an issue that bispecific antibodies may avoid. “Cancers often escape targeted treatments by either down-regulating the target or mutating it,” says Barbas. “The chance of escaping a drug that can hit cancer at multiple sites is much lower because the cancer can’t mutate two receptors at once.”

While MM-111 has the same target as Herceptin, it acts differently, using HER2 only as a marker for cancer cells rather than as the target for drug-induced activity. Ulrik Nielsen, chief scientific officer at Merrimack, says that because the antibody works through different mechanisms, M-111 could be delivered along with Herceptin. In fact, he says, it may prove effective in killing cancer cells that have become resistant to Herceptin.

Another bispecific antibody now in clinical testing by Pfizer takes a similar approach. It binds to two molecules that encourage the growth of the blood vessels that feed tumors: VEGF, a protein targeted by the popular drug Avastin, and ANG-2. If the tumor evolves resistance to one, the drug can still target the other.

Combining the action of two antibodies could also prove much cheaper for pharmaceutical companies and patients. Testing two experimental drugs separately and then in combination is prohibitively expensive. And the drugs already on the market are extremely costly. “Combinations of monofunctional drugs will be unaffordable–treatment with herceptin and avastin can cost upwards of $200,000,” says Barbas, whose research led to the development of the Pfizer antibody now in clinical testing. “We need to wrap them into a single protein package that can be manufactured and delivered to patients with the cost of a single antibody.”

0 comments about this story. Start the discussion »

Credit: Merrimack Pharmaceuticals

Tagged: Biomedicine, cancer, biomarkers, drug, antibodies

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me