Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Autonomous flier: The airplane’s first mission is to monitor the atmosphere above the Pacific Ocean. It can fly for up to 30 hours, reach an altitude of 19.8 kilometers, and travel a range of 22,800 kilometers.

NASA acquired the aircraft from the U.S. Air Force in 2007. They were originally developed for surveillance and reconnaissance missions. Now researchers are modifying them for their first extensive earth science missions. “We can get high resolution in situ measurements, and that is really the gold standard, and something that we have never before been able to do,” says Randy Albertson, director of NASA’s Airborne Science Program in the earth science division at Dryden.

The instruments onboard for the first mission include: a LIDAR instrument that uses a laser pulse to measure the shape, size, and density of clouds and aerosols; a spectrograph that measures and maps pollutants like nitrogen dioxide, ozone, and aerosols; an ultraviolet photometer for ozone measurements; a gas chromatograph to calculate greenhouse gases; a handful of other instruments that can accurately measure atmospheric water vapor and ozone-depleting chlorofluorocarbons ; and high-definition cameras to image the ocean colors and learn about their biological processes. (See a full listing of payload here.)

The researchers will also be able to sample parts of the atmosphere that they have not been able to reach or monitor for long durations–the upper troposphere and lower stratosphere. The aircraft can fly at an altitude of 19.812 kilometers and travel nearly 22,800 kilometers. That part of the atmosphere is “a crucial region that responds to and contributes to climate change at the surface, and we have come to realize that it is highly undersampled,” says David Fahey, co-project scientist and a research physicist at NOAA’s Earth Science Research Lab in Boulder, CO. “If you don’t know what is going on in certain regions of the atmosphere, you will misinterpret what is going on at the surface.”

NASA and Northrop Grumman modified the aircraft to be a plug-in-play system, so that instruments can be easily taken off and new ones installed, depending on the mission. The plane can also be redesigned for a specific mission, if necessary.

“The planes are really robotic satellite-aircraft hybrids that are going to revolutionize the way we do science,” Newman says. The next mission will be to study hurricanes in the Caribbean, and will include a new suite of instruments for the planes.

5 comments. Share your thoughts »

Credits: NASA

Tagged: Computing, climate change, NASA, greenhouse gases, NOAA, earth

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me