Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The research, published this month in the Annals of Neurology, is the first step in a multiyear project assessing how to predict how well people will recover from stroke. Researchers will repeat the brain scanning and behavioral testing months after the patients’ strokes to see how both change over time.

Carter and others ultimately aim to use the technology to better target stroke treatments. “It’s important to know what lies behind recovery, because we want to have a brain-based understanding of new treatments,” says James Rowe, a neuroscientist at Cambridge University, in the U.K., who was not involved in the study. In addition, he says, because this kind of scan can be done very early, “we might be able to classify patients who would benefit from one type of therapy or another.”

Two patients who have similar motor impairments might actually have very different disruptions to their brain networks and therefore benefit from different types of treatment. For example, not everyone responds to constraint-induced movement therapy, in which the strong arm is bound, forcing the patient to use their weak arm. Analysis of network dysfunction might help predict which patients will benefit from this treatment.

The research is part of a broader effort to capitalize on the inherent neural plasticity that is present even in the adult brain. “There is more and more interest in changes in the brain that occur at more chronic stages of stroke,” says Rick Dijkhuizen, a neurobiologist at University Medical Center Utrecht, in the Netherlands, who was not involved in the current work. “Increasing evidence suggests that the brain is able to reorganize even in patients [whose strokes occurred a long time ago], and this gives us opportunities to look at stroke therapies to promote this organization.”

2 comments. Share your thoughts »

Credit: Robert Boston/WUSTL

Tagged: Biomedicine, brain, brain injury, stroke, neural network

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me