Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

After a stroke, the brain suffers more broadly than just at the spot that was starved of blood. New research, which uses brain imaging to examine connections between different parts of the brain, shows that communication between the left and right hemispheres is often disrupted; the greater the disruption, the more profound the patient’s impairment in movement or vision. Researchers hope to use the approach to predict which patients are mostly likely to recover on their own and which will need the most intensive therapy.

The study is part of a broader effort to incorporate the brain mapping technology into post-stroke assessment, including new clinical trials testing experimental drugs and physical therapy in combination with imaging. Mapping brain connectivity and recovery may give scientists a better measure of which treatments most effectively enhance the brain’s innate plasticity–its ability to rewire–and when the brain is best primed for repair.

“The kind of information we’re getting from neural imaging studies is giving us a better understanding of the kind of changes that are important during recovery,” says Alexandre Carter, a neurologist at Washington University, in St. Louis, who led the study.

Stroke patients typically undergo an MRI to identify the precise location of their stroke. But these brain scans don’t show how the damaged part of the brain fits into the larger network–the neural connections that feed into and out of this spot. Just as a delay at one station of a subway system can affect service at numerous stops and subway lines, dysfunction in a localized part of the brain disrupts activity in several different parts.

In the new study, researchers assessed this disruption by creating a functional connectivity map of the brain in people who had recently suffered a stroke. They asked patients to lie quietly in an MRI machine and used functional MRI, an indirect measure of neural activity, to detect spontaneous fluctuations in brain activity. Brain areas that are well-connected will fluctuate in synchrony, providing an indirect way of mapping the brain’s networks.

As is often the case with stroke, they found that patients’ visual or motor problems were limited to just one side of the body, such as a weak left hand or an inability to pay attention to objects in the left side of the field of vision. (Because the left side of the brain typically controls the right side of the body and vice versa, a stroke on one side of the brain will affect the opposite side of the body.) But the researchers found that patients with these symptoms had disruptions in the connections between the two hemispheres. And the level of disruption between the two halves of the brain correlated to the severity of their impairment. “The physical damage has repercussions all throughout the network, like a ripple effect, even in areas that aren’t physically damaged,” says Carter.

2 comments. Share your thoughts »

Credit: Robert Boston/WUSTL

Tagged: Biomedicine, brain, brain injury, stroke, neural network

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me