Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Green algae are cheap to grow, hard to kill, and quick to thrive. Such traits make the tiny plants an ideal production factory, one that is already being extensively explored as a source for biofuels. But a few people are also looking to algae to do a completely different brand of work: the manufacturing of therapeutic drugs, a system that could one day produce large quantities of certain drugs at one-thousandth of today’s costs.

A huge number of so-called biologic drugs, made up of proteins rather than small molecules, are produced, en masse, by bacteria, yeast, or mammalian cell culture–the cells produce proteins that are processed and turned into therapies for cancer, multiple sclerosis, and diabetes, among many other diseases. But such methods can be expensive to set up and maintain: Feeding them requires large amounts of nutrients, sustaining them requires large amounts of energy, and creating sterile facilities is a costly proposition. Stephen Mayfield, director of the San Diego Center for Algae Biotechnology at the University of California at San Diego, believes that algae, which subsist on sunlight and carbon dioxide in the air, could be an ideal and cost-effective substitute.

In a paper published in the Plant Biotechnology Journal, Mayfield and his colleagues looked at the versatility of the green alga Chlamydomonas reinhardtii in order to determine whether it had the potential to act as a robust drug factory. They inserted genes for production of seven different therapeutic proteins currently being made in yeast, bacteria, and mammalian cells, including interferon (for multiple sclerosis) and proinsulin (for diabetes). Of the seven, the algae produced four proteins at levels high enough for commercial use and in forms that were identical to those made by bacterial and mammalian cell systems, and are just as easy to isolate and concentrate.

Complicated proteins that are produced in mammalian cell culture, such as the potent multiple sclerosis drug Tysabri, currently cost an estimated $150 or more per gram of protein. (The number is estimated because few companies release such statistics.) In green algae, Mayfield says, it’s closer to a nickel. “That’s because it’s a plant and it grows in minimal media, pulling carbon dioxide out of the air and using sunlight for its energy source.”

In addition to producing drugs more cheaply, algae plants are cheaper to build. Startup costs for mammalian cell culture plants are the “biggest bottleneck in developing new protein therapeutic drugs,” says Mayfield. “Clinical trials are expensive, but before you even get to the clinic, you have to invest $600 million to build a facility to produce it.”

7 comments. Share your thoughts »

Credit: Beth Rasala, UCSD

Tagged: Biomedicine, drugs, protein, algae

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »