Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Getting chemotherapy agents into solid tumors can be a challenge because high fluid pressure inside tumors makes it difficult for drugs to leave the bloodstream and attack their targets. But now researchers at the University of California, San Francisco Medical Center have discovered a new way to regulate the leakiness of blood vessels: blocking certain molecules surrounding blood vessels in mice can temporarily tweak their leakiness, enhancing flow of drugs to tumors. If scientists can mimic this effect in humans, the compounds could be given along with chemotherapy drugs or molecular imaging reagents to more effectively deliver them into tumor tissues.

The vessels that supply blood to tumors are leakier than those feeding healthy tissue, allowing fluid to accumulate. That triggers high fluid pressure inside tumors, which in turn hinders effective transit of drugs out of blood vessels and into the spaces between the tumor cells, explains Lisa Coussens, senior author of the study, published in Disease Models and Mechanisms.

Coussens’s team discovered that targeting the collagen matrix around blood vessels can control their leakiness. By experimentally inhibiting or enhancing the activity of a number of candidate molecules involved in these processes, they found that an enzyme called matrix metalloproteinase 14 (MMP14) and transforming growth factor beta (TGFß) both work to stabilize blood vessels in “normal” tissues. Reducing the enzyme’s activity or the amount of the growth factor, or preventing cells from interacting with the growth factor by blocking its receptor, all made healthy blood vessels leaky, and also enhanced leakage of molecules out of tumor vessels and into the tumors.

After injecting different sizes of fluorescent molecules into mice with different types of tumors, researchers found that around 30 percent of the larger molecules leaked out into the tumor tissue after blocking the pathway, compared to only 5 percent without blockade. Smaller molecules leaked out at the same rate as in untreated vessels but stayed in the tissue longer, which could also mean an important improvement for drug effectiveness. Although Coussens does not know why this increased retention occurs, she says one possibility might be that inhibiting the pathway also slows down the speed at which the lymphatic system clears the fluid out of the tumor.

The discovery is “extremely exciting and important,” especially because of the involvement of TGFß, says W. Douglas Figg at the National Cancer Institute in Bethesda, MD. “Ideally we could use this to get not only improved leaking but also more synergy with other cancer drugs that already target TGFß.” Turning down the TGFß pathway has been shown to impede tumor development in other ways, for example by inhibiting angiogenesis, the abnormal blood vessel growth seen in some tumors.

0 comments about this story. Start the discussion »

Credit: Coussens laboratory at UCSF

Tagged: Biomedicine, cancer, tumor, blood vessels, chemotherapy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me