Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Sundrop Fuels, a startup based in Louisville, CO, says it has developed a cleaner and more efficient way to turn biomass into synthetic fuels by harnessing the intense heat of the sun to vaporize wood and crop waste. Its process can produce twice the amount of gasoline or diesel per ton of biomass compared to conventional biomass gasification systems, the company claims.

Gasification occurs when dry biomass or other carbon-based materials are heated to above 700 ºC in the presence of steam. At those temperatures, most of the biomass is converted to a synthetic gas. This “syngas” is made up of hydrogen and carbon monoxide, which are the chemical building blocks for higher-value fuels such as methanol, ethanol, and gasoline.

But the heat required for this process usually comes from a portion of the biomass being gasified. “You end up burning 30 to 35 percent of the biomass,” says Alan Weimer, a chemical engineering professor at the University of Colorado, Boulder.

A few years ago, Weimer and his research team began looking at ways of using concentrated solar heat to drive the gasification process. It worked so well that Weimer and Chris Perkins, the graduate student who came up with the idea, went on to cofound Copernican Energy to commercialize the approach. Copernican was acquired by Sundrop Fuels in 2008, and its solar-reactor technology is now at the heart of a 1.5-megawatt thermal solar gasification demonstration facility in Colorado.

The gasifier system consists of ceramic tubes that pass through a furnace. The gasifier is mounted atop a tower surrounded by a field of solar concentrating mirrors that reflect sunlight back to the furnace. As the biomass is dropped through the intensely hot ceramic tubes, it is vaporized into syngas.

Weimer, a former Dow Chemical engineer, says the system is “agnostic” to the types of biomass it can process. “It’s like a sledgehammer because of the (1,200 to 1,300 ºC) temperatures it operates at,” he says, explaining that conventional gasification uses lower temperatures to try to minimize the volume of biomass used to fuel the process. But keeping the temperature lower poses another problem. Gasification at temperatures below 1,000 ºC leaves behind tar. “And that tar is expensive to get rid of,” says Weimer. “If you leave it in there, it will end up killing your catalysts downstream when you try to reform your product into (liquid) fuel.”

9 comments. Share your thoughts »

Credit: Sundrop Fuels

Tagged: Energy, solar, biofuel, fuel, gasification, Sundrop Fuels

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me