Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

“People had largely given up on doing this with organic materials,” Marder says. Through a combination of theoretical design and trial and error, the Georgia Tech scientists were able to create a molecule that had the properties they needed.

So far, the researchers have only measured the molecule’s optical properties in a liquid solution. “The hard work comes now in taking these molecules and putting them into a material and making the switch,” Marder says. The Georgia Tech chemists are already working on that task. While the dye itself is “not the easiest thing to make” and the material will ultimately be expensive, Marder says, any device will probably use only very small quantities.

Perry says that while engineers might be able to push existing electro-optical technology to provide transmission speeds of up to 100 gigabits per second, all-optical processing could theoretically allow for speeds as high as two terabits per second, allowing download of high-definition movies in minutes rather than hours. While they may not be able to hit those speeds, he says that if everything goes well, the group may have a device that can switch data at hundreds of gigabits per second in about five years.

A photonics company contacted the Georgia Tech team only a day or two after the research was first published, and the academics plan to begin discussions with company representatives this week.

Even if they can develop working optical routers as quickly as they hope, Perry notes, it will take much longer for the technology to have any appreciable influence on the speed of consumers’ Internet links, largely because telecom companies tend to upgrade their systems incrementally. He expects that the first customers for any all-optical switch will be companies like Google that run large server farms.

1 comment. Share your thoughts »

Tagged: Computing, Materials, telecom, optical computing, photons, optical networks

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me