Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A new molecule designed to seek out and label cancer cells could help guide surgeons to hidden pockets of disease–a technology that could one day allow for more complete tumor removal and increase a patient’s chances of survival.

The molecular label, developed by researchers at the University of California at San Diego (UCSD), works in two ways. It tags cancer cells with a fluorescent marker to highlight tumors for identification and removal during surgery, and it contains a magnetic marker that can be used to evaluate the disease via magnetic resonance imaging.

In two papers published recently by The Proceedings of the National Academy of Sciences, the UCSD researchers describe a novel marker that fluoresces in the near-infrared, which has wavelengths long enough to make their way through layers of opaque human tissue and can help surgeons find buried tumor cells. In studies in mice, the researchers were able to find and remove 90 percent more residual cancer cells than was possible with visible light alone. And depending on the type of cancer, they were able to increase the animals’ long-term survival rates by as much as fivefold.

When cancerous tumors take hold, a person’s fate often rests in the surgeon’s hands–the more completely a surgeon is able to remove a tumor, the better the patient’s chances of survival. But even the best surgeons work under limiting conditions, extracting only what they can see and feel and hoping that they got it all. They send the tissue to the lab while the patient is still on the operating table and, if the lab deems that the tumor is surrounded by healthy cells, they close the patient back up. If not, they must continue cutting until lab samples come back clean.

With the new molecule, “we can not only do guided surgery, but we can show an increase in survival,” says Roger Tsien, a biochemist at UCSD and the project’s lead researcher.

A small number of researchers are working to provide cancer surgeons with a visual aid to help track down tumor cells that have separated from the main mass–those wound around nerve fibers, for instance, or tucked out of sight. But while some near-infrared methods seem promising, other approaches rely on viruses to insert a fluorescent marker (a gene-therapy like approach, with questionable safety), or don’t fluoresce strongly enough to glow through human tissue.

Tsien, who shared the 2008 Nobel Prize in chemistry for his work on green fluorescent protein, and colleagues created a two-peptide structure. One peptide acts as both a fluorescent and magnetic label, and the other keeps the molecule neutral. In the presence of tumor cells, enzymes called matrix metalloproteinases (MMPs) snip off the neutralizing peptide and allows the labeled one to enter the cell. Once there, the dual probe remains for as long as four or five days.

The new marker not only provides a visual aid during surgery, but can be used to assess the presence of a tumor both before and afterward. Radiologists could localize tumors magnetically during a pre-operative MRI scan, surgeons could then follow the infrared map to remove all traces of glowing tumor, then radiologists could perform a post-operative MRI to ensure there’s no remaining evidence of disease.

0 comments about this story. Start the discussion »

Credit: Nguyen et al. PNAS, doi:10.1073/pnas.0910261107

Tagged: Biomedicine, cancer, imaging, screening, fluorescent probe

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me