Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Reverting skin cells from people with a premature aging disease back to a more embryonic state appears to overcome the molecular defect in these cells. People with the disease have abnormally short telomeres, a repetitive stretch of DNA that caps chromosomes and shrinks with every cell division, even in healthy people.

Researchers from Children’s Hospital Boston found that reprogramming the skin cells, using induced pluripotent stem cell technology, lengthened the telomeres in the cells. The reprogramming process activated the telomerase enzyme, which is responsible for maintaining telomeres. The research was published today in the online version of the journal Nature.

The research adds to previous findings suggesting that enhancing activity of the telomerase enzyme might benefit patients with premature aging disorders. The study also provides a new tool for studying telomerase, an enzyme of great interest to scientists working on both aging and cancer. The shortening of telomeres over a lifetime is thought to be tied to aging. And abnormal activation of telomerase in cancer cells allows them to proliferate uncontrollably. While scientists already knew that reprogramming could lengthen telomeres in cells from healthy people, it was unclear if the same could happen in cells with defective telomerase.

Telomerase is most active in stem cells, allowing these cells to maintain their telomere length and divide indefinitely. The telomeres of differentiated cells, such as skin cells, shorten with every cell division, limiting their lifespan. (The discovery of the enzyme in the 1980s was awarded the Nobel Prize in Physiology or Medicine last year.)

People with a premature aging disease called dyskeratosis congenita often have genetic defects in one of the three components of telomerase, producing a range of abnormalities, including in the skin, blood, and gastrointestinal tract. The deadliest defect is an inability to replenish the various types of blood cells, leading to early death from infection or bleeding. “We know that cells from these patients grow very poorly in culture compared to normal cells,” says Inderjeet Dokal, a physician at Barts and The London School of Medicine and Dentistry, in London, who identified the first genes underlying the disease but was not involved in the new research. The disease, which is quite rare, has become of broader interest thanks to a growing focus on the science of telomeres and their role in aging.

In the new study, Suneet Agarwal, a physician and researcher at Children’s Hospital, and collaborators took skin cells from three patients with the disease and genetically engineered the cells to express a set of genes that triggers reprogramming, reverting the cells to an embryonic state. They were surprised to find that the reprogrammed cells grew and divided, their telomeres lengthening with subsequent divisions.

3 comments. Share your thoughts »

Credit: Suneet Agarwal

Tagged: Biomedicine, stem cells, iPS cells, reprogramming

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me