Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

So far, Solasta’s prototyping has been done on small cells. In the coming months, the company will work on scaling up its cells to conventional thin-film sizes. The company is also testing different substrate materials, including polymer nanowires, to determine which material provides scalability to large areas while supporting the best efficiencies. Naughton, the company’s chief technology officer, says the concept will work with any thin-film solar materials, but the company is focusing on amorphous silicon first.

The nanopillar architecture has another advantage in addition to efficiency when applied to amorphous silicon cells. “Amorphous silicon cells degrade in prolonged sunlight, reducing their efficiency by 20 to 30 percent,” says Naughton. But this degradation is much less pronounced in cells thinner than about 100 nanometers, such as Solasta’s, which should maintain their performance better over their lifetime.

The company will also develop the nanopillar architecture for new types of solar cells that take advantage of quantum phenomena at the nanoscale. The Boston College researchers recently demonstrated that ultrathin solar cells can allow “hot” electrons with very high energy levels to exit the cell. Even in thin cells, however, these electrons tend to lose their energy before they can escape. In the hope that the dual-path architecture of its nanopillars will solve this absorption problem, Solasta will work on developing nanopillar solar cells with ultrathin layers of silicon.

1 comment. Share your thoughts »

Credit: Solasta

Tagged: Energy, Materials, solar, startups, nanomaterials, thin film solar

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me