Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Thin-film solar cells are less expensive than traditional photovoltaics sliced from wafers, but they’re not as efficient at converting the energy in sunlight into electricity. Now a Newton, MA-based startup is developing a nanostructured design that overcomes one of the main constraints on the performance of thin-film solar cells. Solasta fabricates on arrays of nanopillars, rather than flat areas, boosting the efficiency of amorphous silicon solar cells to about 10 percent–still less than crystalline silicon panels, but more than the thin-film amorphous silicon panels on the market today. The company says that the design won’t require new equipment or materials and that it will license its technology to amorphous-silicon manufacturers at the end of this year.

Solasta’s solar architecture eliminates the tradeoff between thick and thin in thin-film solar cell design by separating the electrons’ path from the photons’ path. Light tends to reflect from thin-film cells without being absorbed. The thicker a cell’s active layer, the more incident light it will collect, and the more free electrons it will generate. But the thicker the active layer, the fewer free electrons will make it out of the cell.

The cells designed by Solasta are built on a substrate forested with long, thin, vertically arrayed nanopillars. The pillars are coated first with metal, then with a thin layer of semiconducting material such as amorphous silicon, and then with a layer of transparent conductive oxide. Though the silicon layer is thin, a photon still has a relatively long path to travel down the length of the nanopillars, and a good chance of transferring its energy to an electron. Freed electrons then travel perpendicularly over a very short path to the metal at the core of each pillar, and shimmy down this electrical pole off the cell. “Electrons never have to travel through the photovoltaic material,” says Zhifeng Ren, professor of physics at Boston College. “As soon as they’re generated, they go into the metal.” Ren founded Solasta with professors Michael Naughton and Krzysztof Kempa.

Other groups are also attempting to increase the efficiencies of thin-film solar cells by creating nanostructures that provide separate paths for electrons and photons. But the advantage of Solasta’s nanopillar substrate is that it’s compatible with the manufacturing techniques used to make today’s thin-film solar cells, which are mostly built on glass using chemical-vapor deposition techniques. “We’ll license to existing thin-film manufacturers to get them an efficiency boost without having to switch out their equipment,” says Mike Clary, CEO of Solasta. “Other people are working on nanostructured surfaces to improve the performance in one way or another, but there’s nothing close to these efficiency levels or this close to commercialization,” adds Clary.

1 comment. Share your thoughts »

Credit: Solasta

Tagged: Energy, Materials, solar, startups, nanomaterials, thin film solar

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me