Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Over the last decade, deep brain stimulation, in which an implanted electrode delivers targeted jolts of electricity, has given surgeons an entirely new way to treat challenging neurological diseases. More than 75,000 people have undergone the procedure for Parkinson’s and other disorders. But despite its success, scientists and surgeons know little about its actual effect on the brain or exactly why it works.

An implantable sensor designed to detect vital chemical signals in the brain, currently being tested in animals, could help scientists measure the impact of electrical stimulation and perhaps provide a way to enhance the effectiveness of the treatment. “For a long time in neurosurgery we’ve been dealing with the brain from purely an electrical perspective,” says Nader Pouratian, a neurosurgeon at the University of California, Los Angeles, who was not directly involved in the research. “This allows us to look at the brain as an electrochemical organ and understand the effect of interventions such as deep brain stimulation.”

During the conventional deep brain stimulation procedure, neurosurgeons insert a small electrode into the brain. The patient is awake during the surgery so that the surgeon can find the optimal location and level of stimulation to reduce the patient’s symptoms. In Parkinson’s patients, for example, muscle tremors are often immediately and visibly reduced with the appropriate stimulation.

However, the actual mechanisms behind its therapeutic effect are hotly debated. Recording the release of the brain’s signaling chemicals, known as neurotransmitters, could help to resolve the question, allowing neurosurgeons to better optimize the procedure.

The device consists of a custom-designed sensor electrode that is implanted along with the stimulating electrode, a microprocessor, a Bluetooth module to send data to a computer, and a battery. “It allows us to record dopamine and serotonin wirelessly in real time,” says Kendall Lee, a neurosurgeon at the Mayo Clinic, Rochester, MN, who helped develop the device. “That means we have tremendous control over the chemistry of the brain.”

To detect neurotransmitters, researchers apply a low voltage across the electrode. That oxidizes dopamine molecules near the electrode, triggering current flow at the electrode. “The amount of current flow gives a relative indication of concentration,” says Kevin Bennet, chairman of the division of engineering at the Mayo Clinic and one of Lee’s collaborators.

Preliminary research in pigs using the new system has shown that deep brain stimulation of the area targeted in Parkinson’s patients triggers release of dopamine. Researchers now aim to repeat these experiments in pigs that have some of the symptoms of the disease. For example, the sensors could detect whether certain patterns of dopamine correspond to improvements or worsening of Parkinson’s symptoms.

0 comments about this story. Start the discussion »

Credit: Kendall H. Lee, MD, PhD, director of Mayo Neural Engineering Laboratories, and Kevin Bennet, Chair of Mayo Division of Engineering.

Tagged: Biomedicine, diseases, Parkinson's, deep brain stimulation, chemical sensor, dopamine, Mayo Clinic

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me