Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Organic light-emitting diode (OLED) displays are more energy-efficient and provide a better picture than liquid-crystal displays (LCDs), but they haven’t gained much of a market foothold because they’re far more expensive. A recently introduced OLED TV sold by LG in South Korea costs over $2,500, for example.

A startup in Menlo Park, CA, hopes to bring down the cost of these high-performance displays by making equipment for printing them on a large scale. Kateeva is testing a prototype large-area OLED printer that it will send to display manufacturers for testing next year. According to the company, its equipment can be used to print OLED displays for 60 percent of the cost of LCDs.

OLED displays are now found in a few products that take advantage of the picture quality, such as a high-end 11-inch flat-panel television made by Sony. Some portable electronics, including Google’s Nexus One phone, also use OLEDs because the relatively low-power screen extends battery life.

All the OLED displays on the market are manufactured using an expensive, small-scale technique called shadow-mask evaporation to lay down the light-emitting organic molecules that make up the pixels. Companies have looked into alternatives that are compatible with large-area manufacturing, such as ink-jet printing, but all the processes entail compromises on the performance and lifetime of the display. Kateeva’s technique combines features of shadow-mask printing and ink-jet printing to make high-quality OLED pixels over a large area. The company plans to sell printing equipment and OLED inks made of light-emitting small molecules.

From a technology perspective, “OLEDs do have a leg up” on liquid-crystal displays, says Vladimir Bulovic, professor of electrical engineering and computer science at MIT and a scientific advisor to Kateeva. LCDs use an array of liquid crystals to filter light from a white backlight. They have a relatively low contrast ratio–making a pixel truly black is impossible because some light always leaks through.

OLED displays are made up of layers of organic molecules sandwiched between two electrodes. The organic molecules in each pixel emit light when they’re electrically stimulated. Because the pixels in an OLED produce their own light and that light can be turned off, they produce a better image, and they use less energy. In the lab, OLEDs use 30 percent of the power that state-of-the-art LCDs do.

Where OLED displays fall short is in manufacturing. LCDs have been around since the 1970s, and manufacturing processes have been honed to make them cheaply at a large scale. LCDs are fabricated over very large areas, as big as about nine square meters, then sliced into individual screens, for economies of scale that keep costs low. With the industry-standard shadow-mask printing for making OLED displays, says Conor Madigan, CEO and cofounder of Kateeva, “it’s painful to go larger than .6 by .7 meters.”

0 comments about this story. Start the discussion »

Credit: Technology Review
Video by Katherine Bourzac, edited by Brittany Sauser

Tagged: Computing, Materials, startups, displays, energy efficiency, printed electronics, OLEDs, organic electronics

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me