Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Despite widespread speculation, nothing beyond what Steve Jobs announced last week is known about the A4 chip at the heart of the Apple iPad.

Jobs described the chip with typical restraint during the unveiling of the iPad. “It’s powered by our own silicon–the one gigahertz Apple A4 chip–it screams,” he said, adding that the A4 chip includes an integrated CPU and graphics core on a single system on a chip (SoC).

Soon after the announcement, experts began speculating that the chip was based on the same ARM architecture as the iPhone and iPod touch.

“No official source that I can find has confirmed that the A4 uses ARM,” says Tom Halfhill, senior analyst at Microprocessor Report. However, he says, it’s logical to assume that the iPad is using a processor based on the ARM architecture. “It makes sense, [because] Apple wouldn’t have to port the iPhone OS to a new CPU architecture.”

Some have suggested that the chip may be based on the latest and fastest ARM designs, but both the slightly older and slower ARM Cortex 8 and the newer ARM Cortex 9 cores can run at a clock speed of one gigahertz, notes Halfhill. Boosting the speed of an ARM Cortex 8 core–the core thought to run in the Samsung-built chip that powers the iPhone 3GS–to one gigahertz would be possible because the iPad has more room for batteries, allowing engineers to drive the A4 at a higher voltage and therefore clock frequency.

Gene Munster, a senior research analyst at Piper Jaffray, says that Apple might have felt the need to develop its own chip for a simple reason. “One reason Apple did this is because they’re saving money on the chip,” says Munster. “On an iPhone, a Samsung chip is $15–it’s the third most expensive piece of the phone. Going from $15 to $5 doesn’t sound like much, but if you multiply it over 15 million devices, it adds up.”

Raw speed has been cited as another reason for Apple to move to a new chip, but Munster doesn’t buy it–not with companies like NVidia and Qualcomm offering similarly powerful designs for netbooks and other devices. “I just can’t imagine Apple being able to build something themselves that’s better than these companies,” he says.

A more likely technical reason for Apple’s custom silicon, Munster argues, is the need to keep power consumption to a minimum. “They could create something that’s not as fast, but might be better at power consumption,” he says. “If you look at the battery life they’re talking about, the tablet is bigger than the iPhone but it seems like they’ve done a better job with battery life.”

The A4’s graphics core might also use the ARM architecture, but this would require on-the-fly translation of code for existing iPhone applications. Since “almost all” existing iPhone applications will run on the iPad, it’s more likely that Apple is continuing to use upgraded versions of the same graphics cores present in the iPhone and iPhone 3GS, which were created from designs licensed by Imagination Technologies, based in the U.K.

10 comments. Share your thoughts »

Credit: Apple

Tagged: Computing, Apple, iPad, chips

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me