Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Engineers and technophiles have long dreamt of plastic-based displays that are flexible, lightweight, and rugged compared to their glass-backed counterparts. But plastic screens still aren’t widely available, partly because they’re so hard to manufacture reliably in large numbers.

Now a company called Phicot has adapted a technique for printing amorphous silicon electronics onto plastic that could finally make such displays practical. The manufacturing technique, already used to make cheap solar cells, involves depositing chemicals on long sheets of plastic as they are fed through a series of rollers. Phicot is a subsidiary of PowerFilm of Ames, IA, which already makes amorphous silicon solar cells using this roll-to-roll process.

“The basic technology of roll-to-roll can bring the price down and make plastic an excellent option for the back half of the display,” says Frank Jeffrey, cofounder and CEO of PowerFilm.

Most modern displays rely on transistors made of amorphous silicon on glass. The problem with amorphous silicon on glass is that is deposited at high temperatures that melt plastic. So Phicot turned to low-temperature chemical-vapor deposition of amorphous silicon, which doesn’t melt plastic and yet produces transistors fast enough to control the pixels of electrophoretic displays such as E-Ink, and eventually those in an organic light-emitting diode (OLED) display.

At Phicot’s facility, layers of amorphous silicon and insulating materials are deposited onto plastic. These rolls of plastic are then sent to a facility at HP Labs, where engineers use a novel kind of lithography, called self-aligned imprint lithography (SAIL), to etch transistors onto the plastic’s surface.

Once the transistors have been deposited, the screen itself must be added. HP has tested its transistors using E-Ink and with its own reflective display technology, capable of showing color and video. According to Carl Taussig, director of HP’s information surfaces labs, the amorphous silicon transistors could be replaced with those made of other semiconductors that could drive OLEDs.

Phicot isn’t the only company trying to make plastic-based displays. Polymer Vision, a spin-off of Philips, and Plastic Logic are both promising products in the near future. However, these devices will rely on transistors made of organic materials, which are easy to deposit on plastic at low temperatures, but operate more slowly than those made of amorphous silicon. While organic transistors are good enough to power electrophoretic displays, they are incompatible with OLEDs. Another company, Kovio, is aiming to print silicon on plastic using technology that resembles an ink-jet printer; the main applications at this point are RFID tags.

0 comments about this story. Start the discussion »

Credit: Phicot

Tagged: Computing, Business, displays, plastic, roll-to-roll process, silicon electronics

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me