Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Engineered bacteria have been rewired with the genetic machinery necessary to convert cellulose into a range of chemicals, including diesel fuel. The bacteria, developed by South San Francisco company LS9 in collaboration with researchers at the University of California, Berkeley, make the necessary enzymes for every step along the synthesis pathway and can convert biomass into fuel without the need for additional processing. LS9 has demonstrated the bacteria in pilot-scale reactors and plans to scale the process to a commercial level later this year.

Jay Keasling, professor of chemical engineering and bioengineering at UC Berkeley and one of LS9’s founders, and scientists at LS9 report engineering E. coli bacteria to synthesize and excrete the enzyme hemicellulase, which breaks down cellulose into sugars. The bacteria can then convert those sugars into a variety of chemicals–diesel fuel among them. The final products are excreted by the bacteria and then float to the top of the fermentation vat before being siphoned off.

Using these methods, it’s possible to create a range of fuels from biomass, but LS9 is focusing on diesel rather than fuels similar to gasoline for the time being, says Stephen del Cardayre, the company’s vice president of research and development. Diesel specifications are easier to meet and the market for diesel is growing by 2 to 4 percent a year, while that for gasoline is flat. Last May, LS9 partnered with Procter & Gamble to develop fuels as well as commodity chemicals.

The effort by LS9 is part of an increasing push by bioengineers to bring down the cost of biofuels by developing microbes that can turn biomass, such as switchgrass and agricultural waste, into fuels without any additional processing that would require expensive catalysts and high temperatures. Microbes can typically complete only part of the conversion, requiring post-processing to convert the chemical precursors made by the microbes. The newly engineered E. coli “are a singular vehicle that can accomplish all this at once, providing a very efficient process to make products already on the market,” says David Berry, a partner at Flagship Ventures, which cofounded LS9.

5 comments. Share your thoughts »

Credit: Keasling lab

Tagged: Energy, Materials, energy, biofuels, synthetic biology, diesel, chemicals, LS9

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me