Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The regenerative power of young blood appears to be mediated by osteoblasts–bone-forming stem cells previously shown to play a role in regulating blood-forming stem cells. Researchers found that osteoblasts from old animals can make blood-forming stem cells from young mice act old. And conversely, surgically exposing old mice to young blood rejuvenates aged osteoblasts, restoring their capacity to properly regulate blood-forming stem cells.

Researchers haven’t yet identified the mysterious molecule in blood that controls these aging effects. But insulin-like growth factor 1 (IGF-1), a hormone that has been shown to regulate longevity in a number of organisms, may play a key role. Researchers found that they could partially correct aging defects in osteoblasts by suppressing IGF-1. On the other hand, suppressing IGF-1 in muscle cells has the opposite effect, highlighting the complex role this molecule probably plays in aging.

It remains to be seen just what effect rejuvenating the circulatory system will have on the animals long-term. For example, scientists haven’t assessed whether older mice surgically exposed to young blood are more resistant to infection than their normal aged counterparts. “But there are lots of reasons to link changes in [the circulatory system] with changes in the immune system,” said Wagers. Older mice produce fewer lymphocytes, which respond to viruses and other pathogens. And they produce more myeloid cells, which tend to promote inflammatory conditions. “In a lot of tissues, you see an increase in inflammation that occurs with age,” said Wagers.

The research also has important implications for regenerative medicine, such as stem cell transplants. “Most effort has focused on how to make [replacement] cells,” says Linheng Li, a researcher at the Stowers Institute for Medical Research, in Kansas City, MO, who was not involved the study. “But we need to focus on making cells that function properly.” Blood-forming stem cells, for example, are made in great quantities with age. But those cells don’t work as well as younger ones. “It highlights the importance of the environment into which you transplant them,” said Wagers. “If you take young healthy cells, and put them into an old environment, you might not get the full regenerative benefit of the cells.”

11 comments. Share your thoughts »

Credit: Amy Wagers
Video by Harvard

Tagged: Biomedicine, stem cells, aging, blood

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me