Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Last month, Madison, WI-based Cellular Dynamics International (CDI) began shipping heart cells derived from a person’s own stem cells. The cells could be useful to researchers studying everything from the toxicity of new or existing drugs to the electrodynamics of both healthy and diseased cardiac cells.

CDI’s scientists create their heart cells–called iCell Cardiomyocytes–by taking cells from a person’s own blood (or other tissue) and chemically reversing them back to a pluripotent state. This means they are able to grow or can be programmed to grow into any cell in the body.

The science comes from the lab of CDI cofounder and stem-cell pioneer James Thomson of the University of Wisconsin. In 2007, his lab published a study led by postdoc Junying Yu in the journal Science that detailed how to reverse virtually any human cell back to an undifferentiated state known as an induced pluripotent stem cell, or IPS cell. (Japanese physician and geneticist Shinya Yamanaka also created IPS cells from humans and published details in the journal Cell in 2007.)

“One of the biggest advantages of these cells is we can make them in quantity and on demand,” says CDI CEO Robert Palay. “Before, you had to get heart cells from a cadaver, so there was a limited supply.”

Palay and CDI’s chief commercial officer, Chris Kendrick-Parker, discussed the stem-cell-derived cardiac cells at the JP Morgan Healthcare Conference in San Francisco last week. A customer receives all of the different types of heart cells in a vial about the size of the tip of a little finger; some of the 1.5 million to 5 million heart cells in the vial can be induced to pulse when placed in a petri dish.

CDI designed the cardiac cells primarily to aid drug discovery and to help predict the efficacy and toxicity of different drugs. Other tests might include screens to determine if there are differences in how various ethnicities and other genetic subpopulations respond to drugs–such populations can be at higher risk for side effects from drugs, and at a higher risk for the drugs simply not working. Some researchers also plan to see how cells derived from patients with different types of heart disease respond to particular drugs.

1 comment. Share your thoughts »

Credit: Cellular Dynamics International
Video by Cellular Dynamics

Tagged: Biomedicine, personalized medicine, heart, drug development, stem cell science, Cellular Dynamics International, drug testing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me