Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The activated circuit also produces a protein that breaks down the signaling molecule, providing a time-delayed brake to the cycle. The dynamic interactions of different parts of the circuit in individual and neighboring cells create regular pulses of the signaling molecule and the fluorescent protein, appearing as a wave of synchronous activity. It’s “a feat analogous to engineering all the world’s traffic lights to blink in unison,” wrote Martin Fussenegger, a bioengineer at the Swiss Federal Institute of Technology, in Zurich, in a commentary accompanying the paper in Nature.

The colonies of bacteria are grown in a custom-designed microfluidics chip, a device that allows scientists to precisely control the conditions the microorganisms are exposed to. Changing the rate at which nutrients flow into the chip alters the period of the oscillations, says Hasty.

“The ability to synchronize activity among cells in a population could be an important building block for many applications, from biomedicine to bioenergy,” says Ron Weiss, a former TR35 winner and a bioengineer at MIT who was not involved in the research. For example, the bacteria could be engineered to detect a specific toxin, with the frequency of the fluorescence indicating its concentration in the environment. While a microscope is currently needed to read the output, Hasty’s team is now working on a version that can be seen with the naked eye.

The oscillator could also be used to deliver drugs, such as insulin, that function best when dosed at certain intervals. “In the future you could think of implants that produce a therapeutic effect,” says Fussenegger. The dosing of the drug would relate to the strength or amplitude of the oscillation, while the timing of the dosing would be determined by its frequency. “There would be nothing to worry about for the patient,” he says.

Researchers are now trying to make the system more robust, as well as to extend the timescale over which it can synchronize activity. They also want to combine it with previous genetic oscillators, and transfer it into different cell types that might be suited to different biotech applications.

0 comments about this story. Start the discussion »

Credit: Tal Danino, Octavio Mondragon-Palamino, Lev Tsimring, and Jeff Hasty

Tagged: Biomedicine, bacteria, synthetic biology, genetic engineering, Google - test

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me