Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Technically, an LPD is most similar to a cathode ray tube (CRT) display–the bulky design that is quickly becoming obsolete. Inside a CRT, a magnet directs an electron beam onto a phosphor-coated screen. But because LPD uses solid-state lasers, which are compact and lower power, an LPD set can be thinner and more energy efficient while producing a similar high-quality image.

Hajjar explains that LPDs are possible thanks to the growth of the solid-state lighting industry, in which LEDs are becoming an alternative to incandescent bulbs and compact fluorescent lighting. The type of phosphors used in an LPD is identical to the type used to coat LEDs in lighting applications.

This means that the manufacturing of LPDs will piggyback on the growth of the fledgling LED lighting industry. This is an advantage, says Hajjar, who stresses that it’s easier to assemble components that can be bought off the shelf than to develop entirely new manufacturing processes. Indeed, Prysm, which has a manufacturing facility in Concord, MA, doesn’t need to build a new semiconductor fabrication plant, as other new display companies tend to do. This is expensive and it takes a significant amount of time to get the fab up and running.

There are potential advantages in the simplicity of the manufacturing process, says Paul Semenza, an analyst at research company Display Search, because there’s no need for huge factories, expensive equipment, and a lot of materials. “The capital investments are much, much less than for flat-panel displays,” he says.

That said, Semenza suspects that technical challenges could come from the fact that Prysm has developed and is manufacturing its own screens, which could hamper production. In addition, there could be some challenges reliably aligning the lasers, optical scanner, and screen.

However, if these problems are overcome, Semenza says, LPD could be attractive to a number of different markets. It’s possible to inexpensively tailor an LPD to a specific brightness, size, and resolution, he notes.

Prysm is initially targeting the consumer display market, competing directly with companies making the types of flat-screen televisions many people are putting in their living rooms today. According to Prysm, the first product will be announced in the coming months, and it will be priced competitively with other displays on the market, with an eye toward expanding to large advertising displays.

4 comments. Share your thoughts »

Tagged: Computing, displays, lasers, television, LCD, laser TV

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me