Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

In the current model of econeering, the “example phase” and the “classification phase” both provide opportunities for productive interactions between bioengineers and ecologists or organismal scientists. During the example phase described above, both basic scientists and bioengineers tested out candidate reagents to see what was useful, and later many groups initiated hunts for new examples. During the classification phase, more systematic synthetic biology and genomic strategies enabled more thorough assessment of the properties of classes of reagents.

Interestingly, something similar has been happening recently with GFP, as classes of fluorescent protein emerge with distinct properties: for a while, it’s been known that mutating the original jellyfish GFP can yield blue and yellow fluorescent proteins, but not red ones. A decade ago, an example of a red fluorescent protein from coral was revealed– now this example has yielded, through bioengineering, a new class of fluorescent molecules with colors such as tomato and plum. So it is possible that the cycle described here –find an example, define a class, repeat–might represent a generally useful econeering process, one of luck optimization intermeshed with scientific and engineering skill.

Did the opsin community do “better” than the fluorescent protein community, in speeding up the conversion of basic science insight into bioengineering application? Well, one of the opsins that we screened in this month’s paper was first characterized in the early 1970s, and it was better at changing the voltage of a mammalian cell than perhaps half of the other opsins we screened. So one could argue that a decent candidate reagent had hidden in plain sight for almost 40 years!

Although these two specific fields have benefited from basic scientists and bioengineers working together, a more general way to speed up the process of econeering would be to have working summits to bring together ecology minded and organismal scientists and bioengineers at a much larger scale, to explore what natural resources could be more deeply investigated, or what bioengineering needs could be probed further. Then interfaces, both monetary and intellectual, could facilitate the active flow of insights and reagents between these fields. The next step could involve teaching people in each field the skills of their counterparts: how many bioengineers would relish the ability to hunt down and characterize species in the ocean or desert? How many organismal biologists and ecologists would benefit from trying out applications in specific areas of medical need?

To fulfill the vision of econeering, we should devise technologies for assessing the functions of biological subsystems fully and quickly, perhaps even enabling rapid basic science and bioengineering assessments to be done in one fell swoop. Devices for point-of-discovery phenotyping that allow for gene or gene pathway cloning, heterologous expression, and functional screening–and maybe even downstream methodologies such as in-the-field directed evolution–would allow the rapid assessment of the physiology of the products of genes or interacting sets of gene products. (Note well: the gene sequence is important, but only the beginning; gene sequences are not sufficient by themselves to fully understand the function of a gene product in a complex natural or bioengineering context.)

Bioinformatic visualization tools could be useful: can we scan ecology with a bioengineering lens, revealing areas of evolutionary space that haven’t been investigated (at either the example or class level)? What are the areas of bioengineering need where examples from nature might be useful in inspiring solutions?

Ideally, an econeering toolbox will emerge that will let us confront some of our greatest unmet needs–not just brain disorders, but needs in complex spaces such as energy, antibiotic resistance, desalination, and climate. If we can better understand, invent from, and improve the preservation of our natural resources, we’ll be poised to equip ourselves with a billion years of natural bioengineering. This will give us a great advantage in tackling the big problems of our time–and help future generations tackle theirs.

0 comments about this story. Start the discussion »

Credit: Brian Chow, Xue Han and Ed Boyden/MIT

Tagged: Biomedicine, optogenetics, bioengineering, gene expression, neuron, flourescent, neural interface

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »