Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Z’s for zebrafish: Zebrafish larvae (above) are naturally transparent. Scientists hope to one day study the effects of sleep drugs on the brain and spinal cord, which can be seen in the image above as a long white structure stretching left to right.

Using clustering algorithms, Schier and his colleagues grouped fish into 60,000 distinct behavioral profiles, depending on various constraints. “When you turn off the light, how often are they active? When they are inactive, how long? That’s what we observe in the fish,” says Schier. “You can measure many different parameters, and that allows you to profile different drugs.”

Anti-inflammatories, such as cytokines, nonsteroidal anti-inflammatory drugs, and cyclosporine, had a surprising effect. Normally, these drugs induce sleep when taken to combat infection such as the flu. However, Schier found that when given to normal, healthy zebrafish, these compounds, or immunomodulators, made fish more active during the day.

“In disease, immunomodulators have been implicated in sleep,” says Schier. “We propose that maybe there’s some baseline function for these immunomodulators during normal sleep and wake cycles.”

Such findings could help researchers identify new molecular players involved in sleep and wakefulness. Irina Zhdanova, associate professor of anatomy and neurobiology at Boston University Medical School, studies the physiological mechanisms of circadian rhythms and sleep in zebrafish. Zhdanova says there are many sleep-related drugs on the market with substantial side effects; these effects might be avoided with better screening tools.

“The huge scope of drugs tested [by Schier’s group] shows that zebrafish-based tests can be effectively used to at least prescreen multiple classes of existing drugs and new candidate substances,” says Zhdanova. “[That is] certainly very helpful.”

In the future, Schier says, zebrafish could also be used as a model for testing drugs for human psychiatric diseases like schizophrenia and autism. The idea is to identify genes associated with the human disease, and try to engineer the same genetic defect in zebrafish. Researchers could then look for certain behavioral changes as a result, such as a fish’s sensitivity to touch, or its reaction to visual cues.

“Hopefully there would be a connection between the gene affected, and change in behavior, and one would try to correct the change in behavior by adding particular drugs,” says Schier. “That’s a bit science fiction at the moment, but it is possible.”

0 comments about this story. Start the discussion »

Credits: Albert Pan and Alexander Schier

Tagged: Biomedicine, drugs, drug development, sleep, drug screening, screen, sleep apnea

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »