Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Nano circuitry: Researchers sent these chips through an ink-jet printer, which deposited carbon-nanotube circuitry on top of them.

With funding from DARPA the group decided to focus first on monitoring estrogen and other hormones because there appeared to be a gaping need. So far, they’ve shown that their sensors are capable of sensing estrogen, but are only accurate to the level of nanograms per milliliter. In order to be effective with a single finger prick, that sensitivity needs to be improved by an order of magnitude (to picograms per milliliter).

The combination of technologies being used by Aneeve is “quite compelling,” says Jerome Lynch, an engineer at the University of Michigan. He notes that the company’s innovation lies in integrating multiple technologies that others have explored individually. “And they’re exploiting technologies that are cost-effective. When others have tried it, they’ve looked more at the proof-of-concept level, whereas [Aneeve] is looking more at commercial viability and scalability in the marketplace.”

Nicholas Kotov, a nanotechnology and chemical engineer at the University of Michigan, agrees that it’s the combination of numerous technologies that makes the project important. “The use of ink-jet printing technology for sensing, and particularly hormones, is interesting,” he says.

Ultimately, the researchers hope to build a small device that can be plugged into a smart phone and can translate data from the carbon-nanotube sensor strips into a log that helps users, and their physicians, keep track of the information. At the moment, Aneeve’s “lab” consists of little more than a bare benchtop inside the UCLA incubator facility. But use of the incubator’s clean lab, printing, and other facilities has eliminated the need for the startup to purchase its own equipment. “Our next steps are to further optimize the sensing platform,” Galatsis says, adding that they aim to have a working prototype in 18 months.

4 comments. Share your thoughts »

Credits: Aneeve Nanotechnologies

Tagged: Biomedicine, Materials, carbon nanotubes, sensors, chips, circuit, infertility

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me