Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Monitoring and control systems are another up-front investment that is both a precondition to high-speed operation and a cost-saver, providing the confidence in safety needed to drive trains fast. “If a train is going 300 to 350 kph, the consequences of safety failures become very critical,” says Dierkx.

Dierkx says that systems under development by his Beijing-based center include train-mounted laser scanners to observe track conditions; real-time systems to predict failures; sensors on bridges and tunnels; and dynamic scheduling systems to ensure that trains are available when needed and have a free path to operate at top speeds.

Dierkx, Liu, and others say the U.S. could ultimately benefit from China’s investment in high-speed rail, because it should bring down the cost of creating the type of dedicated high-speed rail lines that the U.S. still lacks. “The U.S. is going to be able to capture the advantage of a lot of the innovation taking place globally,” says Dierkx.

It increasingly looks as though the U.S. will do just that. The California High Speed Rail Authority is using $10 billion in funding from a bond issue approved by voters last winter to begin detailed design work on a 790-mile system linking Los Angeles, San Francisco, and Sacramento. Rod Diridon, executive director of San Diego State University’s Mineta Transportation Institute and former chair of California’s authority, says the system will reduce California’s greenhouse gas emissions by nine million tons by 2050, since high-speed rail is three times more efficient than flying, and five times more efficient than driving per passenger mile.

Diridon says California’s bond vote broke the political “dam” holding back high-speed rail. Within months, President Obama proposed a high-speed rail plan and Congress approved $8 billion in stimulus funds that the Federal Railroad Administration is expected to award this month. “All of a sudden the funding is there,” says Diridon.

Diridon says even Amtrak could get the dedicated lines it needs to unleash its Acela Express service from Boston to New York City–an idea that was all but unthinkable just a few years ago. Amtrak’s Canadian-designed trains are capable of traveling at over 200 kph, but their average speed is less than half that because they share the rails with freight. “We’re looking very hard at how to get the Acela off the freight lines,” says Diridon.

23 comments. Share your thoughts »

Credit: China South Locomotive & Rolling Stock.

Tagged: Energy, China, transportation, high-speed rail, trains

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me