Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

China has begun operating what is, by several measures, the world’s fastest rail line: a dedicated 968-kilometer line linking Wuhan, in the heart of central China, to Guangzhou, on the southeastern coast. In trials, the “WuGuang” line trains (locally built variants of Japan’s Shinkansen and Germany’s InterCity Express high-speed trains) clocked peak speeds of up to 394 kilometers per hour (or 245 miles per hour). They have also recorded an average speed of 312 kph in nonstop runs four times daily since the WuGuang’s December 26 launch, slashing travel time from Wuhan to Guangzhou from 10.5 hours to less than three.

WuGuang’s speed blows away the reigning champion: France’s TGV, which runs from Lorraine to Champagne and averages 272 kph. It also bests China’s first high-speed train, the Beijing-to-Tianjin trains that average 230 kph, as well as Shanghai’s magnetically levitated airport shuttle trains that can hit 430 kph but average less than 251 kph.

Rail experts say the builders of the new WuGuang line deserve more bragging rights than the trains’ European and Japanese designers.

“The high-speed rail technology implemented in China is not that much different from the TGV, Germany’s ICE, and the Shinkansen,” says Rongfang Liu, a rail expert at the New Jersey Institute of Technology in Newark. What is notable, she and others say, is that unlike many high-speed lines that repurpose older tracks, this one was designed from the ground up for very high-speed operation over hundreds of kilometers. Bridges and tunnels, as well as the concrete bed beneath the track, have been designed to safely rocket passengers around, through, or over the natural and man-made obstacles that would otherwise force the trains to slow down.

Plenty more speedy lines are coming in China under an ambitious build-out initiated in 2006 by China’s Ministry of Railways, and accelerated with government stimulus funds. A two-trillion-yuan ($293 billion) plan envisions 16,000 kilometers of dedicated high-speed rail lines connecting all of China’s major cities by 2020. The first East-West segment–a link from Xi’an to Zhengzhou–could begin operating as early as this month, and work is underway to extend the Beijing-Tianjin line southward to Shanghai by 2012. WuGuang, meanwhile, is expected to expand northward to Beijing and South to Hong Kong by 2013. “Over the next five years there’ll be more high-speed rail added in China than the rest of the world combined,” says Keith Dierkx, director of IBM’s Beijing-based Global Rail Innovation Center.

High-speed rail is seen as a clean way to boost the expansion of China’s transportation system, according to Dierkx. Dedicated lines will help meet rail demand, which is expected to more than triple to five billion passengers per year by 2020. And building these lines is seen as preferable to further expanding reliance on imported oil for automobiles and airplanes. Dierkx says dedicated high-speed rail should also improve freight transportation by easing congestion on conventional rail lines.

Building fast lines requires civil engineering works on a massive scale. WuGuang has 625 bridges with a combined length of 362 kilometers, and 221 tunnels with a combined length of 177 kilometers, contributing to a total construction cost of 116 billion yuan ($17 billion). The 1,300-kilometer Beijing-to-Shanghai line will cost an estimated 221 billion yuan–more than the Three Gorges Dam hydroelectric project.

However, experts say part of the high cost will be paid back through lower operating costs. Rather than laying rail on wood or concrete sleepers set into crushed rock, the Chinese rails are almost exclusively set into beds of concrete slabs designed by German rail engineering firms RAIL.ONE and Max Bögl. This eliminates damage to the track and rolling stock caused by flying stones lifted by turbulence from the high-speed trains. It also reduces wear on the wheels from shifting tracks.

23 comments. Share your thoughts »

Credit: China South Locomotive & Rolling Stock.

Tagged: Energy, China, transportation, high-speed rail, trains

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me