Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A British defense technology company, Qinetiq, is testing a new type of lithium-ion battery for hybrids and electric vehicles that could be substantially cheaper and more powerful than existing batteries.

The battery is based on lithium-ion iron-sulfide chemistry, which has a number of advantages over the chemistry of existing batteries, says Gary Mepsted, technical manager for Qinetiq’s power sources group. The new battery would cost half as much as existing vehicle batteries and could last longer and recharge more quickly that other lithium batteries. Mepsted says that compared to standard lithium-ion batteries, the new battery has demonstrated about 1.6 times the energy density (which would extend a plug-in electric’s range) and a 50 percent higher power density (which would let hybrids charge and discharge more rapidly).

Researchers have long viewed lithium-ion batteries as an attractive alternative to the expensive metal-based batteries now used in hybrids. But although standard lithium-ion batteries are relatively cheap and can store about twice as much energy as standard nickel metal hydride cells, developers have had to overcome a number of technological challenges to make them practical for vehicles.

Plug-in electric vehicles need batteries with higher energy densities to extend their range between charges, says Mepsted. And for hybrids, the power density of standard lithium-ion batteries is less than ideal for coping with the rapid charging and discharging that comes with the regenerative braking systems used in hybrids.

Another issue is safety, says Jeff Dahn, a professor of physics and chemistry at Dalhousie University in Halifax, Canada. In small devices like cell phones, this is less of an issue, he says. “But in large cells, it’s hard to remain stable under abuse conditions.” Such conditions include overcharging or collisions, which can cause the batteries to combust or even explode.

Qinetiq’s approach involves making cathodes from lithium-ion iron sulfide instead of the more common lithium-cobalt oxide. Because this chemistry results in two lithium ions for every sulphide, it creates a massive increase in energy density.

14 comments. Share your thoughts »

Credit: Qinetiq

Tagged: Energy, batteries, plug-in hybrids, hybrid vehicles

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me