Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

To make a three-dimensional circuit, the researchers simply repeat the stamping and electrode-growth procedures to stack as many layers as are needed before the final etching process. The nanotube stamping process, which the Stanford group first demonstrated last year, is key to creating stacked layers because it can be done at low temperatures that don’t melt the metal electrical contacts in underlying layers.

While materials scientists are still working on how to grow batches of carbon nanotubes where every single one is semiconducting, the Stanford group is working around the problem. “Instead of burning out one tube at a time, they do it at the circuit level, then design the circuits smartly to get around the burned-out tubes,” says IBM’s Chen.

“They’ve demonstrated small, simple circuits, like what was done in the mid-1960s with silicon,” says Shekhar Borkar, an Intel fellow and director of the company’s microprocessor technology lab. The Stanford group has made, for example, a simple calculator that can add and store numbers.

The Stanford group is currently working to make ever more complex integrated circuits. “So far as complexity is concerned, there is fundamentally no barrier” on carbon nanotubes, says Mitra. Materials barriers remain, however. The Stanford nanotube arrays are some of the densest ever made, with five to 10 nanotubes per micrometer, but this isn’t enough. “We need 100 nanotubes per micrometer to get really good performance,” says Wong.

2 comments. Share your thoughts »

Credit: Stanford

Tagged: Computing, Materials, nanotechnology, silicon, electronics, carbon nanotubes, energy efficiency, nanotubes

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me