Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A new engine designed in Germany reduces the pollutants in diesel exhaust emissions to barely measurable levels. The motor relies on extremely high fuel-injection and combustion pressures to burn fuel more completely–dramatically reducing both soot and nitrogen-oxide emissions.

Diesel engines use fuel more efficiently than gasoline engines and emit less carbon dioxide, but the trade-off is that they are usually more polluting. The higher combustion temperatures required to burn diesel lead to increased nitrogen-oxide emissions. And because diesel is heavy and less volatile than gasoline, not all the fuel is burned during combustion, resulting in the formation of soot particles. The worst offenders are buses and heavy-duty trucks.

Engineers at the Technical University-Munich (TUM) designed the new engine in a three-year project called Niedrigst-Emissions-LKW-Dieselmotor (NEMo), which translates to “lowest-emission diesel truck engine.” Georg Wachtmeister, chair of internal combustion engines in the university’s Department of Mechanical Engineering, led the effort. Using a single-cylinder research engine, Wachtmeister’s team found a balance between exhaust gas recirculation, turboboost pressure, and fuel-injector nozzle configuration that allowed them to minimize both soot and nitrogen-oxide formation.

Modern diesel engines decrease nitrogen-oxide formation by cooling down part of their exhaust and recirculating it back into the combustion chamber (together with the fresh air used to burn the fuel). In this mixture, carbon dioxide and water from the exhaust gases moderate the combustion process, keeping the temperature in check. As a result, fewer nitrogen oxides are formed–but soot production increases, since the proportion of oxygen in the air-exhaust mixture is lower and the fuel burns less completely.

The TUM researchers designed their test engine so that the turbocharger compresses the air-exhaust mixture to 10 bar–roughly 10 times the atmospheric pressure at sea level–before introducing it into the combustion chamber. In contrast, mass-production engines can compress the mixture to a maximum of about 3.5 bar. Once compressed in this way, the air-exhaust mixture in the new engine contains enough oxygen for the diesel fuel to burn more completely. The maximum air pressure inside the combustion chamber is 300 bar, double that used in most production engines.

To offset the increased soot production caused by changing the exhaust-gas recirculation rate, the NEMo team modified the fuel-injector nozzle so that it atomizes diesel fuel at a pressure of over 3,000 bar, generating a fuel mist of microscopic particles that burns very quickly and practically soot-free. The most advanced production engines today use an injection pressure of about 1,800 bar.

12 comments. Share your thoughts »

Credit: Sebastian Pflaum, Technical University-Munich

Tagged: Energy, diesel, pollution, clean energy, engines

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me