Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Ordinary paper can be turned into a battery electrode simply by dipping it into carbon-nanotube inks. The resulting electrodes, which are strong, flexible, and highly conductive, might be used to make cheap energy storage devices to power portable electronics.

It’s now possible to print lightweight circuits and screens for electronics like e-readers, but conventional batteries still weigh these devices down. Carbon nanotubes are a promising material for printing batteries because, in addition to their strength, light weight, and conductivity, they can store a large amount of energy–a quality that helps portable electronics run longer between charges.

Now a group of Stanford University researchers, led by materials science professor Yi Cui, have demonstrated that ordinary office paper soaks up carbon nanotubes like a sponge and can be turned into electrodes for batteries and supercapacitors. The advantage of paper, says Cui, is that it’s cheap and interacts strongly with nanotubes without the need for putting additives in the ink. “We take advantage of the porous structure of paper,” says Cui. “Carbon nanotubes absorb into the paper and stick on really tightly.”

After paper is dipped in the nanotube ink and air-dried, it becomes highly conductive. The Stanford group tested the thin films as electrodes in supercapacitors and found that they could store more total energy, and operate at higher currents, than previous printed nanotube devices. Joel Schindall, professor of electrical engineering and computer science at MIT, says the paper supercapacitors store a surprisingly high amount of charge. The Stanford group also tested the paper electrodes as current collectors in lithium-ion batteries. Their performance matched that of the metal current collectors used in these batteries, even though the metal collectors are much heavier. This work is described this week in the Proceedings of the National Academy of Sciences.

Other groups have worked on using paper as a substrate for making electrodes. However, previous attempts to build nanotube devices on paper were much more complicated, says Cui, and required growing the nanotubes on the paper or using novel paper formulations as a starting point. The dipping method is “simple and nice,” says Nicholas Kotov, professor of chemical engineering at the University of Michigan.

3 comments. Share your thoughts »

Credits: PNAS, Stanford University

Tagged: Energy, Materials, batteries, carbon nanotubes, energy efficiency, printed electronics, portable electronics, paper

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »