Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Better thrust: A carbon nanotube cathode is mounted on an experimental setup inside an ion thruster.

“The examination of carbon nanotubes for cathodes is a relatively new approach, but one of several that has been investigated over the last decade,” says Michael Patterson, the principal investigator of the new ion-propulsion system that’s part of NASA’s Evolutionary Xenon Thruster (NEXT) program. Researchers at NASA’s Glenn Research Center have investigated the use of microstructures made of diamond-like materials, but have had difficulty using them. “Generally they have a short lifetime when subjected to erosive environments or run at very low currents,” says Patterson.

To create the carbon-nanotube cathodes, the Georgia Tech researchers grow the multiwalled carbon nanotubes using plasma instead of conventional chemical vapor deposition. “We need to be able to finely control the height of the carbon nanotubes, which for our design is 10 microns,” says Ready.

Busek, a space propulsion company based in Natick, MA, is also developing carbon-nanotube cathodes that are already space-certified. Ready says the researchers have a good relationship with the company and would be interested in working with it to commercialize their own technology.

The Georgia Tech researchers have demonstrated the durability of their carbon nanotubes by showing they can survive the vibrations experienced during launch. The nanotubes have a lifespan of over 368 hours. The group has received a $6.5 million grant from DARPA, the research and development arm of the U.S. Department of Defense, and have begun a second phase of testing.

“Carbon nanotubes are a worthy area of research that could improve the overall system performance,” says Patterson. He adds that carbon-nanotube cathodes may be most suitable for low-power spacecraft and small satellites because the standard cathode technology is most prohibiting on these systems. “A large fraction of the propellant is wasted on the cathode.”

5 comments. Share your thoughts »

Credits: Georgia Institute of Technology

Tagged: Computing, Materials, space, carbon nanotubes, spacecraft, satellites, ion propulsion, ion engines

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »